On a mixture autoregressive model
Abstract
We generalize the Gaussian mixture transition distribution (GMTD) model introduced by Le and co‐workers to the mixture autoregressive (MAR) model for the modelling of non‐linear time series. The models consist of a mixture of K stationary or non‐stationary AR components. The advantages of the MAR model over the GMTD model include a more full range of shape changing predictive distributions and the ability to handle cycles and conditional heteroscedasticity in the time series. The stationarity conditions and autocorrelation function are derived. The estimation is easily done via a simple EM algorithm and the model selection problem is addressed. The shape changing feature of the conditional distributions makes these models capable of modelling time series with multimodal conditional distributions and with heteroscedasticity. The models are applied to two real data sets and compared with other competing models. The MAR models appear to capture features of the data better than other competing models do.
Citing Literature
Number of times cited according to CrossRef: 97
- Yanfei Kang, Rob J. Hyndman, Feng Li, GRATIS: GeneRAting TIme Series with diverse and controllable characteristics, Statistical Analysis and Data Mining: The ASA Data Science Journal, 10.1002/sam.11461, 13, 4, (354-376), (2020).
- Zuogong Yue, Victor Solo, undefined, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 10.1109/ICASSP40776.2020.9053016, (6044-6048), (2020).
- Addison Woodford Bohannon, Vernon J. Lawhern, Nicholas R. Waytowich, Radu V. Balan, The Autoregressive Linear Mixture Model: a Time-Series Model for an Instantaneous Mixture of Network Processes, IEEE Transactions on Signal Processing, 10.1109/TSP.2020.3012946, (1-1), (2020).
- Mika Meitz, Pentti Saikkonen, Testing for observation-dependent regime switching in mixture autoregressive models, Journal of Econometrics, 10.1016/j.jeconom.2020.04.048, (2020).
- Uchenna C. Nduka, Tobias E. Ugah, Chinyeaka H. Izunobi, Robust estimation using multivariate t innovations for vector autoregressive models via ECM algorithm , Journal of Applied Statistics, 10.1080/02664763.2020.1742297, (1-19), (2020).
- Mohammad Reza Mahmoudi, Mohsen Maleki, Dumitru Baleanu, Vu-Thanh Nguyen, Kim-Hung Pho, A Bayesian Approach to Heavy-Tailed Finite Mixture Autoregressive Models, Symmetry, 10.3390/sym12060929, 12, 6, (929), (2020).
- Mridu Sahu, Saumya Vishwal, Srungaram Usha Srivalli, Naresh Kumar Nagwani, Shrish Verma, Sneha Shukla, Applying Auto-Regressive Model’s Yule-Walker Approach to Amyotrophic Lateral Sclerosis (ALS) patients’ Data, Current Medical Imaging Formerly Current Medical Imaging Reviews, 10.2174/1573405614666180322143503, 15, 8, (749-760), (2019).
- Hossein Hassani, Mohammad Reza Yeganegi, Juncal Cuñado, Rangan Gupta, Forecasting interest rate volatility of the United Kingdom: evidence from over 150 years of data, Journal of Applied Statistics, 10.1080/02664763.2019.1666093, (1-16), (2019).
- Arash Nademi, The single-index panel data models with heterogeneous link function: mixture approach, Communications in Statistics - Simulation and Computation, 10.1080/03610918.2019.1610438, (1-14), (2019).
- Fares Ouzzani, Mohamed Bentarzi, On mixture periodic Integer-Valued ARCH models , Communications in Statistics - Simulation and Computation, 10.1080/03610918.2019.1635155, (1-27), (2019).
- A. Hajrajabi, M. Maleki, Nonlinear semiparametric autoregressive model with finite mixtures of scale mixtures of skew normal innovations, Journal of Applied Statistics, 10.1080/02664763.2019.1575953, (1-20), (2019).
- Mika Meitz, Daniel P. A. Preve, Pentti Saikkonen, A Mixture Autoregressive Model Based on Student's ttDistribution, SSRN Electronic Journal, 10.2139/ssrn.3177419, (2018).
- Arash Nademi, Younes Nademi, Forecasting crude oil prices by a semiparametric Markov switching model: OPEC, WTI, and Brent cases, Energy Economics, 10.1016/j.eneco.2018.06.020, 74, (757-766), (2018).
- M. Maaziz, S. Kharfouchi, Parameter estimation of Markov switching bilinear model using the (EM) algorithm, Journal of Statistical Planning and Inference, 10.1016/j.jspi.2017.07.002, 192, (35-44), (2018).
- Maddalena Cavicchioli, On mixture autoregressive conditional heteroskedasticity, Journal of Statistical Planning and Inference, 10.1016/j.jspi.2017.12.002, 197, (35-50), (2018).
- Najah F. Ghalyan, David J. Miller, Asok Ray, A Locally Optimal Algorithm for Estimating a Generating Partition from an Observed Time Series and Its Application to Anomaly Detection, Neural Computation, 10.1162/neco_a_01101, 30, 9, (2500-2529), (2018).
- Nguyet Nguyen, Hidden Markov Model for Stock Trading, International Journal of Financial Studies, 10.3390/ijfs6020036, 6, 2, (36), (2018).
- Warut Pannakkong, Van-Hai Pham, Van-Nam Huynh, A Novel Hybridization of ARIMA, ANN, and K-Means for Time Series Forecasting, International Journal of Knowledge and Systems Science, 10.4018/IJKSS.2017100103, 8, 4, (30-53), (2017).
- Catherine Almhana, Vartan Choulakian, Jalal Almhana, undefined, 2017 IEEE International Conference on Communications (ICC), 10.1109/ICC.2017.7996977, (1-6), (2017).
- R. Gamasaee, M.H. Fazel Zarandi, A new Dirichlet process for mining dynamic patterns in functional data, Information Sciences, 10.1016/j.ins.2017.04.008, 405, (55-80), (2017).
- Jack Goss, Filling the Gap Between Global VaR Models and Stress Testing, SSRN Electronic Journal, 10.2139/ssrn.3221647, (2017).
- Guodong Li, Qianqian Zhu, Zhao Liu, Wai Keung Li, On Mixture Double Autoregressive Time Series Models, Journal of Business & Economic Statistics, 10.1080/07350015.2015.1102735, 35, 2, (306-317), (2017).
- Maria DeYoreo, Athanasios Kottas, A Bayesian nonparametric Markovian model for non-stationary time series, Statistics and Computing, 10.1007/s11222-016-9702-x, 27, 6, (1525-1538), (2016).
- Irene L. Hudson, Shalem Y. Leemaqz, Susan W. Kim, David Darwent, Greg Roach, Drew Dawson, SOM Clustering and Modelling of Australian Railway Drivers’ Sleep, Wake, Duty Profiles, Artificial Neural Network Modelling, 10.1007/978-3-319-28495-8_11, (235-279), (2016).
- Abbas Khalili, Jiahua Chen, David A. Stephens, Regularization in Regime-Switching Gaussian Autoregressive Models, Advanced Statistical Methods in Data Science, 10.1007/978-981-10-2594-5_2, (13-34), (2016).
- Danilo Bolano, André Berchtold, General framework and model building in the class of Hidden Mixture Transition Distribution models, Computational Statistics & Data Analysis, 10.1016/j.csda.2014.09.011, 93, (131-145), (2016).
- Semhar Michael, Volodymyr Melnykov, Finite Mixture Modeling of Gaussian Regression Time Series with Application to Dendrochronology, Journal of Classification, 10.1007/s00357-016-9216-4, 33, 3, (412-441), (2016).
- Serkan Aras, İpek Deveci Kocakoç, A new model selection strategy in time series forecasting with artificial neural networks: IHTS, Neurocomputing, 10.1016/j.neucom.2015.10.036, 174, (974-987), (2016).
- Leena Kalliovirta, Mika Meitz, Pentti Saikkonen, Gaussian mixture vector autoregression, Journal of Econometrics, 10.1016/j.jeconom.2016.02.012, 192, 2, (485-498), (2016).
- Bruce G. Lindsay, Michael Stewart, Mixture Models, The New Palgrave Dictionary of Economics, 10.1057/978-1-349-95121-5, (1-8), (2016).
- Hien D. Nguyen, Geoffrey J. McLachlan, Jeremy F.P. Ullmann, Andrew L. Janke, Laplace mixture autoregressive models, Statistics & Probability Letters, 10.1016/j.spl.2015.11.006, 110, (18-24), (2016).
- André Berchtold, Optimization of Mixture Models: Comparison of Different Strategies, Computational Statistics, 10.1007/BF03372103, 19, 3, (385-406), (2016).
- Fabio Nieto, Edna C. Moreno, Univariate Conditional Distributions of an Open-Loop TAR Stochastic Process, Revista Colombiana de Estadística, 10.15446/rce.v39n2.58912, 39, 2, (149), (2016).
- Luiz Albino Teixeira Júnior, Edgar Manuel Carreño Franco, Rafael Morais de Souza, undefined, Anais do XVIII Simpósio de Pesquisa Operacional & Logística da Marinha, 10.5151/marine-spolm2015-140488, (388-399), (2016).
- Arnaud Dufays, Infinite-State Markov-Switching for Dynamic Volatility, Journal of Financial Econometrics, 10.1093/jjfinec/nbv017, 14, 2, (418-460), (2015).
- Faycal Hamdi, undefined, 2015 6th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), 10.1109/ICMSAO.2015.7152210, (1-6), (2015).
- Jie Ding, Mohammad Noshad, Vahid Tarokh, undefined, 2015 IEEE International Conference on Data Mining Workshop (ICDMW), 10.1109/ICDMW.2015.209, (1441-1446), (2015).
- Jie Ding, Mohammad Noshad, Vahid Tarokh, undefined, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), 10.1109/ALLERTON.2015.7447034, (418-425), (2015).
- Howell Tong, Threshold models in time series analysis—Some reflections, Journal of Econometrics, 10.1016/j.jeconom.2015.03.039, 189, 2, (485-491), (2015).
- Jeroen V.K. Rombouts, Lars Stentoft, Option pricing with asymmetric heteroskedastic normal mixture models, International Journal of Forecasting, 10.1016/j.ijforecast.2014.09.002, 31, 3, (635-650), (2015).
- Shihong Xia, Congyi Wang, Jinxiang Chai, Jessica Hodgins, Realtime style transfer for unlabeled heterogeneous human motion, ACM Transactions on Graphics (TOG), 10.1145/2766999, 34, 4, (1-10), (2015).
- Musen Wen, Keh-Shin Lii, A New Time Series Model for Transaction Data and Marked Point Processes, SSRN Electronic Journal, 10.2139/ssrn.2520363, (2014).
- Jouni Pohjalainen, Paavo Alku, undefined, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 10.1109/ICASSP.2014.6854813, (6285-6289), (2014).
- M. Bentarzi, L. Djeddou, On Mixture Periodic Vector Autoregressive Models, Communications in Statistics - Simulation and Computation, 10.1080/03610918.2012.750353, 43, 10, (2325-2352), (2014).
- Jouni Pohjalainen, Cemal Hanilci, Tomi Kinnunen, Paavo Alku, Mixture Linear Prediction in Speaker Verification Under Vocal Effort Mismatch, IEEE Signal Processing Letters, 10.1109/LSP.2014.2339632, 21, 12, (1516-1520), (2014).
- Arash Nademi, Rahman Farnoosh, Mixtures of autoregressive-autoregressive conditionally heteroscedastic models: semi-parametric approach, Journal of Applied Statistics, 10.1080/02664763.2013.839129, 41, 2, (275-293), (2013).
- C.S. Wong, On a constrained mixture vector autoregressive model, Mathematics and Computers in Simulation, 10.1016/j.matcom.2013.05.001, 93, (19-28), (2013).
- Raquel Prado, Sequential estimation of mixtures of structured autoregressive models, Computational Statistics & Data Analysis, 10.1016/j.csda.2011.03.017, 58, (58-70), (2013).
- Iván Olier, Nelson J. Trujillo-Barreto, Wael El-Deredy, A switching multi-scale dynamical network model of EEG/MEG, NeuroImage, 10.1016/j.neuroimage.2013.04.046, 83, (262-287), (2013).
- S. H. Alizadeh, S. Rezakhah, Hidden Markov Mixture Autoregressive Models: Stability and Moments, Communications in Statistics - Theory and Methods, 10.1080/03610926.2011.593283, 42, 6, (1087-1104), (2013).
- M. Y. Hassan, M. Y. El-Bassiouni, Modelling Poisson marked point processes using bivariate mixture transition distributions, Journal of Statistical Computation and Simulation, 10.1080/00949655.2012.662683, 83, 8, (1440-1452), (2013).
- Faycal Hamdi, Said Souam, undefined, 2013 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), 10.1109/ICMSAO.2013.6552570, (1-6), (2013).
- Madalina Olteanu, Joseph Rynkiewicz, Asymptotic properties of autoregressive regime-switching models, ESAIM: Probability and Statistics, 10.1051/ps/2011153, 16, (25-47), (2012).
- Mehdi Khashei, Mehdi Bijari, Gholam Ali Raissi Ardali, Hybridization of autoregressive integrated moving average (ARIMA) with probabilistic neural networks (PNNs), Computers & Industrial Engineering, 10.1016/j.cie.2012.01.017, 63, 1, (37-45), (2012).
- Dag Tjøstheim, Modelling Nonlinear and Nonstationary Time Series, Time Series Analysis: Methods and Applications, 10.1016/B978-0-444-53858-1.00004-1, (67-97), (2012).
- Foued Saâdaoui, A probabilistic clustering method for US interest rate analysis, Quantitative Finance, 10.1080/14697681003591712, 12, 1, (135-148), (2012).
- Mehdi Khashei, Mehdi Bijari, Hybridization of the probabilistic neural networks with feed-forward neural networks for forecasting, Engineering Applications of Artificial Intelligence, 10.1016/j.engappai.2012.01.019, 25, 6, (1277-1288), (2012).
- Mehdi Khashei, Mehdi Bijari, A new class of hybrid models for time series forecasting, Expert Systems with Applications, 10.1016/j.eswa.2011.09.157, 39, 4, (4344-4357), (2012).
- Roland Langrock, Iain L. MacDonald, Walter Zucchini, Some nonstandard stochastic volatility models and their estimation using structured hidden Markov models, Journal of Empirical Finance, 10.1016/j.jempfin.2011.09.003, 19, 1, (147-161), (2012).
- Jürgen Franke, Markov Switching Time Series Models, Time Series Analysis: Methods and Applications, 10.1016/B978-0-444-53858-1.00005-3, (99-122), (2012).
- Dejan P. Jovanovic, Ross S. McVinish, Philip K. Pollett, undefined, 2011 19th Mediterranean Conference on Control & Automation (MED), 10.1109/MED.2011.5983194, (473-478), (2011).
- K D Morton, P A Torrione, L M Collins, Variational Bayesian Learning for Mixture Autoregressive Models With Uncertain-Order, IEEE Transactions on Signal Processing, 10.1109/TSP.2011.2128310, 59, 6, (2614-2627), (2011).
- J. Franke, J.-P. Stockis, J. Tadjuidje-Kamgaing, W. K. Li, Mixtures of nonparametric autoregressions, Journal of Nonparametric Statistics, 10.1080/10485252.2010.539686, 23, 2, (287-303), (2011).
- C.S. Wong, Modeling Hong Kong’s stock index with the Student t-mixture autoregressive model, Mathematics and Computers in Simulation, 10.1016/j.matcom.2010.05.014, 81, 7, (1334-1343), (2011).
- M. Bentarzi, M. Merzougui, Moments of Mixture Periodic Autoregressive Models, Communications in Statistics - Theory and Methods, 10.1080/03610926.2010.503017, 40, 22, (3937-3947), (2011).
- Mehdi Khashei, Mehdi Bijari, A novel hybridization of artificial neural networks and ARIMA models for time series forecasting, Applied Soft Computing, 10.1016/j.asoc.2010.10.015, 11, 2, (2664-2675), (2011).
- Georgi N. Boshnakov, On first and second order stationarity of random coefficient models, Linear Algebra and its Applications, 10.1016/j.laa.2010.09.023, 434, 2, (415-423), (2011).
- Ralf Östermark, Concurrent processing of heteroskedastic vector-valued mixture density models, Journal of Applied Statistics, 10.1080/02664760903121236, 37, 10, (1637-1659), (2010).
- J. V. K. Rombouts, Lars Stentoft, Option Pricing with Asymmetric Heteroskedastic Normal Mixture Models, SSRN Electronic Journal, 10.2139/ssrn.1682110, (2010).
- Jeroen K. Vermunt, Longitudinal Research Using Mixture Models, Longitudinal Research with Latent Variables, 10.1007/978-3-642-11760-2, (119-152), (2010).
- Alexandre X. Carvalho, Georgios Skoulakis, Time Series Mixtures of Generalized t Experts: ML Estimation and an Application to Stock Return Density Forecasting , Econometric Reviews, 10.1080/07474938.2010.481987, 29, 5-6, (642-687), (2010).
- Bezza Hafidi, Abdallah Mkhadri, The Kullback information criterion for mixture regression models, Statistics & Probability Letters, 10.1016/j.spl.2010.01.014, 80, 9-10, (807-815), (2010).
- Fukang Zhu, Qi Li, Dehui Wang, A mixture integer-valued ARCH model, Journal of Statistical Planning and Inference, 10.1016/j.jspi.2010.01.037, 140, 7, (2025-2036), (2010).
- undefined Huizhan Wang, undefined Fangan Deng, undefined, 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), 10.1109/ICCASM.2010.5622419, (V14-45-V14-49), (2010).
- Mike K. P. So, Iris W.H. Yip, Multivariate GARCH Models with Correlation Clustering, SSRN Electronic Journal, 10.2139/ssrn.1548408, (2009).
- J. V. K. Rombouts, Lars Stentoft, Bayesian Option Pricing Using Mixed Normal Heteroskedasticity Models, SSRN Electronic Journal, 10.2139/ssrn.1315307, (2009).
- Theis Lange, Anders Rahbek, An Introduction to Regime Switching Time Series Models, Handbook of Financial Time Series, 10.1007/978-3-540-71297-8, (871-887), (2009).
- Georgi N. Boshnakov, Analytic expressions for predictive distributions in mixture autoregressive models, Statistics & Probability Letters, 10.1016/j.spl.2009.04.009, 79, 15, (1704-1709), (2009).
- He Ni, Hujun Yin, A self-organising mixture autoregressive network for FX time series modelling and prediction, Neurocomputing, 10.1016/j.neucom.2009.03.019, 72, 16-18, (3529-3537), (2009).
- A. W. Jayawardena, P. C. Xu, W. K. Li, Rainfall data simulation by hidden Markov model and discrete wavelet transformation, Stochastic Environmental Research and Risk Assessment, 10.1007/s00477-008-0264-0, 23, 7, (863-877), (2008).
- Tom Fong, Chun Shan Wong, Stress Testing Banks' Credit Risk Using Mixture Vector Autoregressive Models, SSRN Electronic Journal, 10.2139/ssrn.1326833, (2008).
- D. Giannikis, I.D. Vrontos, P. Dellaportas, Modelling nonlinearities and heavy tails via threshold normal mixture GARCH models, Computational Statistics & Data Analysis, 10.1016/j.csda.2007.05.007, 52, 3, (1549-1571), (2008).
- John W. Lau, Tak Kuen Siu, Modelling long-term investment returns via Bayesian infinite mixture time series models, Scandinavian Actuarial Journal, 10.1080/03461230701862889, 2008, 4, (243-282), (2008).
- M. Bentarzi, F. Hamdi, Mixture periodic autoregressive conditional heteroskedastic models, Computational Statistics & Data Analysis, 10.1016/j.csda.2008.06.019, 53, 1, (1-16), (2008).
- John W. Lau, Mike K.P. So, Bayesian mixture of autoregressive models, Computational Statistics & Data Analysis, 10.1016/j.csda.2008.06.001, 53, 1, (38-60), (2008).
- Yongqiang Tang, Subhashis Ghosal, A consistent nonparametric Bayesian procedure for estimating autoregressive conditional densities, Computational Statistics & Data Analysis, 10.1016/j.csda.2006.06.020, 51, 9, (4424-4437), (2007).
- L. Bauwens, C.M. Hafner, J.V.K. Rombouts, Multivariate mixed normal conditional heteroskedasticity, Computational Statistics & Data Analysis, 10.1016/j.csda.2006.10.012, 51, 7, (3551-3566), (2007).
- Emmanuel Flachaire, Olivier Nuñez, Estimation of the income distribution and detection of subpopulations: An explanatory model, Computational Statistics & Data Analysis, 10.1016/j.csda.2006.07.004, 51, 7, (3368-3380), (2007).
- Luc Bauwens, Christian M. Hafner, J. V. K. Rombouts, Multivariate Mixed Normal Conditional Heteroskedasticity, SSRN Electronic Journal, 10.2139/ssrn.914148, (2006).
- Tatiana Miazhynskaia, Sylvia Frühwirth-Schnatter, Georg Dorffner, Bayesian testing for non-linearity in volatility modeling, Computational Statistics & Data Analysis, 10.1016/j.csda.2005.12.014, 51, 3, (2029-2042), (2006).
- Raquel Prado, Francisco Molina, Gabriel Huerta, Multivariate time series modeling and classification via hierarchical VAR mixtures, Computational Statistics & Data Analysis, 10.1016/j.csda.2006.03.002, 51, 3, (1445-1462), (2006).
- Anita Prinzie, Dirk Van den Poel, Investigating purchasing-sequence patterns for financial services using Markov, MTD and MTDg models, European Journal of Operational Research, 10.1016/j.ejor.2004.05.004, 170, 3, (710-734), (2006).
- Tugba Taskaya-Temizel, Matthew C. Casey, A comparative study of autoregressive neural network hybrids, Neural Networks, 10.1016/j.neunet.2005.06.003, 18, 5-6, (781-789), (2005).
- Carmen Vidal, Alberto Suárez, Hierarchical Mixtures of Autoregressive Models for Time-Series Modeling, Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003, 10.1007/3-540-44989-2_71, (597-604), (2003).
- André Berchtold, Mixture transition distribution (MTD) modeling of heteroscedastic time series, Computational Statistics & Data Analysis, 10.1016/S0167-9473(02)00191-3, 41, 3-4, (399-411), (2003).
- Alberto Suárez, Mixtures of Autoregressive Models for Financial Risk Analysis, Artificial Neural Networks — ICANN 2002, 10.1007/3-540-46084-5_192, (1186-1191), (2002).
- Chun Shan Wong, Wai Keung Li, On a Mixture Autoregressive Conditional Heteroscedastic Model, Journal of the American Statistical Association, 10.1198/016214501753208645, 96, 455, (982-995), (2001).




