Fast sampling of Gaussian Markov random fields
Abstract
This paper demonstrates how Gaussian Markov random fields (conditional autoregressions) can be sampled quickly by using numerical techniques for sparse matrices. The algorithm is general and efficient, and expands easily to various forms for conditional simulation and evaluation of normalization constants. We demonstrate its use by constructing efficient block updates in Markov chain Monte Carlo algorithms for disease mapping.
Citing Literature
Number of times cited according to CrossRef: 170
- Hans Fabricius Hansen, David Randell, Allan Rod Zeeberg, Philip Jonathan, Directional–seasonal extreme value analysis of North Sea storm conditions, Ocean Engineering, 10.1016/j.oceaneng.2019.106665, 195, (106665), (2020).
- Dionissios T. Hristopulos, Dionissios T. Hristopulos, Lattice Representations of Spartan Random Fields, Random Fields for Spatial Data Modeling, 10.1007/978-94-024-1918-4_8, (365-392), (2020).
- Weigao Sun, Mohsen Zamani, Mohammad Reza Hesamzadeh, Hai-Tao Zhang, Data-Driven Probabilistic Optimal Power Flow With Nonparametric Bayesian Modeling and Inference, IEEE Transactions on Smart Grid, 10.1109/TSG.2019.2931160, 11, 2, (1077-1090), (2020).
- Guy Baele, Mandev S. Gill, Philippe Lemey, Marc A. Suchard, Hamiltonian Monte Carlo sampling to estimate past population dynamics using the skygrid coalescent model in a Bayesian phylogenetics framework, Wellcome Open Research, 10.12688/wellcomeopenres.15770.1, 5, (53), (2020).
- Daniel F. Schmidt, Enes Makalic, Bayesian Generalized Horseshoe Estimation of Generalized Linear Models, Machine Learning and Knowledge Discovery in Databases, 10.1007/978-3-030-46147-8_36, (598-613), (2020).
- Martin Stoll, A literature survey of matrix methods for data science, GAMM-Mitteilungen, 10.1002/gamm.202000013, 43, 3, (2020).
- David Edmund Allen, Stochastic Volatility and GARCH: Do Squared End-of-Day Returns Provide Similar Information?, Journal of Risk and Financial Management, 10.3390/jrfm13090202, 13, 9, (202), (2020).
- Pantelis Samartsidis, Shaun R. Seaman, Silvia Montagna, André Charlett, Matthew Hickman, Daniela De Angelis, A Bayesian multivariate factor analysis model for evaluating an intervention by using observational time series data on multiple outcomes, Journal of the Royal Statistical Society: Series A (Statistics in Society), 10.1111/rssa.12569, 183, 4, (1437-1459), (2020).
- David E. Allen, Michael McAleer, Do We Need Stochastic Volatility and Generalised Autoregressive Conditional Heteroscedasticity? Comparing Squared End-Of-Day Returns on FTSE, Risks, 10.3390/risks8010012, 8, 1, (12), (2020).
- Daniel R. Kowal, Daniel C. Bourgeois, Bayesian Function-on-Scalars Regression for High-Dimensional Data, Journal of Computational and Graphical Statistics, 10.1080/10618600.2019.1710837, (1-10), (2020).
- Daisy Arroyo, Xavier Emery, Iterative algorithms for non-conditional and conditional simulation of Gaussian random vectors, Stochastic Environmental Research and Risk Assessment, 10.1007/s00477-020-01875-0, (2020).
- Alex Lenkoski, Fredrik L. Aanes, Sovereign Risk Indices and Bayesian Theory Averaging, Econometrics, 10.3390/econometrics8020022, 8, 2, (22), (2020).
- Dominik Bertsche, Robin Braun, Identification of Structural Vector Autoregressions by Stochastic Volatility, Journal of Business & Economic Statistics, 10.1080/07350015.2020.1813588, (1-39), (2020).
- Mario Giacomazzo, Yiannis Kamarianakis, Bayesian estimation of subset threshold autoregressions: short-term forecasting of traffic occupancy, Journal of Applied Statistics, 10.1080/02664763.2020.1801606, (1-32), (2020).
- Adam Walder, Ephraim M. Hanks, Bayesian analysis of spatial generalized linear mixed models with Laplace moving average random fields, Computational Statistics & Data Analysis, 10.1016/j.csda.2019.106861, (106861), (2019).
- Daniel R. Kowal, David S. Matteson, David Ruppert, Dynamic shrinkage processes, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 10.1111/rssb.12325, 81, 4, (781-804), (2019).
- Stefan Lang, Samson B. Adebayo, Ludwig Fahrmeir, Winfried J. Steiner, Bayesian Geoadditive Seemingly Unrelated Regression, Computational Statistics, 10.1007/s001800300144, 18, 2, (263-292), (2019).
- Stefan Lang, Eva-Maria Pronk, Ludwig Fahrmeir, Function estimation with locally adaptive dynamic models, Computational Statistics, 10.1007/s001800200121, 17, 4, (479-499), (2019).
- Adam J King, Robert E Weiss, A general semiparametric Bayesian discrete-time recurrent events model, Biostatistics, 10.1093/biostatistics/kxz029, (2019).
- Giri Gopalan, Birgir Hrafnkelsson, Christopher K. Wikle, Håvard Rue, Guðfinna Aðalgeirsdóttir, Alexander H. Jarosch, Finnur Pálsson, A Hierarchical Spatiotemporal Statistical Model Motivated by Glaciology, Journal of Agricultural, Biological and Environmental Statistics, 10.1007/s13253-019-00367-1, (2019).
- D. Andrew Brown, Christopher S. McMahan, Stella Watson Self, Sampling Strategies for Fast Updating of Gaussian Markov Random Fields, The American Statistician, 10.1080/00031305.2019.1595144, (1-24), (2019).
- Masahiro Tanaka, Bayesian Inference of Local Projections with Roughness Penalty Priors, Computational Economics, 10.1007/s10614-019-09905-y, (2019).
- Andee Kaplan, Mark S. Kaiser, Soumendra N. Lahiri, Daniel J. Nordman, Simulating Markov Random Fields With a Conclique-Based Gibbs Sampler, Journal of Computational and Graphical Statistics, 10.1080/10618600.2019.1668800, (1-11), (2019).
- Sergey Dolgov, Karim Anaya-Izquierdo, Colin Fox, Robert Scheichl, Approximation and sampling of multivariate probability distributions in the tensor train decomposition, Statistics and Computing, 10.1007/s11222-019-09910-z, (2019).
- Antik Chakraborty, Anirban Bhattacharya, Bani K Mallick, Bayesian sparse multiple regression for simultaneous rank reduction and variable selection, Biometrika, 10.1093/biomet/asz056, (2019).
- Yi Liu, Feng Guo, A Bayesian Time-Varying Coefficient Model for Multitype Recurrent Events, Journal of Computational and Graphical Statistics, 10.1080/10618600.2019.1686988, (1-12), (2019).
- Zhilong Fang, Curt Da Silva, Rachel Kuske, Felix J. Herrmann, Uncertainty quantification for inverse problems with weak partial-differential-equation constraints, GEOPHYSICS, 10.1190/geo2017-0824.1, 83, 6, (R629-R647), (2018).
- Alfonso M. Panunzio, Régis Cottereau, Guillaume Puel, Large scale random fields generation using localized Karhunen–Loève expansion, Advanced Modeling and Simulation in Engineering Sciences, 10.1186/s40323-018-0114-7, 5, 1, (2018).
- Adway Mitra, Ashwin K. Seshadri, Detection of spatiotemporally coherent rainfall anomalies using Markov Random Fields, Computers & Geosciences, 10.1016/j.cageo.2018.10.004, (2018).
- Ying C. MacNab, Rejoinder on: Some recent work on multivariate Gaussian Markov random fields, TEST, 10.1007/s11749-018-0608-0, 27, 3, (554-569), (2018).
- Sigrunn H. Sørbye, Eirik Myrvoll-Nilsen, Håvard Rue, An approximate fractional Gaussian noise model with $$\mathcal {O}(n)$$O(n) computational cost, Statistics and Computing, 10.1007/s11222-018-9843-1, (2018).
- Martin Feldkircher, Florian Huber, Unconventional U.S. Monetary Policy: New Tools, Same Channels?, Journal of Risk and Financial Management, 10.3390/jrfm11040071, 11, 4, (71), (2018).
- Dorit S. Hochbaum, Sheng Liu, Adjacency-Clustering and Its Application for Yield Prediction in Integrated Circuit Manufacturing, Operations Research, 10.1287/opre.2018.1741, (2018).
- Yosra Marnissi, Emilie Chouzenoux, Amel Benazza-Benyahia, Jean-Christophe Pesquet, An Auxiliary Variable Method for Markov Chain Monte Carlo Algorithms in High Dimension, Entropy, 10.3390/e20020110, 20, 2, (110), (2018).
- Nabil Kahalé, Efficient Simulation of High Dimensional Gaussian Vectors, Mathematics of Operations Research, 10.1287/moor.2017.0914, (2018).
- Giri Gopalan, Birgir Hrafnkelsson, Guðfinna Aðalgeirsdóttir, Alexander H. Jarosch, Finnur Pálsson, A Bayesian hierarchical model for glacial dynamics based on the shallow ice approximation and its evaluation using analytical solutions, The Cryosphere, 10.5194/tc-12-2229-2018, 12, 7, (2229-2248), (2018).
- Tore Selland Kleppe, Modified Cholesky Riemann Manifold Hamiltonian Monte Carlo: exploiting sparsity for fast sampling of high-dimensional targets, Statistics and Computing, 10.1007/s11222-017-9763-5, 28, 4, (795-817), (2017).
- Bruno Galerne, Arthur Leclaire, Texture Inpainting Using Efficient Gaussian Conditional Simulation, SIAM Journal on Imaging Sciences, 10.1137/16M1109047, 10, 3, (1446-1474), (2017).
- Jing Cao, Bayesian functional enrichment analysis for the Reactome database, Statistical Theory and Related Fields, 10.1080/24754269.2017.1387444, 1, 2, (185-193), (2017).
- Paul Schmidt, Mark Mühlau, Volker Schmid, Fitting large-scale structured additive regression models using Krylov subspace methods, Computational Statistics & Data Analysis, 10.1016/j.csda.2016.07.006, 105, (59-75), (2017).
- Wesley Tansey, Alex Athey, Alex Reinhart, James G. Scott, Multiscale Spatial Density Smoothing: An Application to Large-Scale Radiological Survey and Anomaly Detection, Journal of the American Statistical Association, 10.1080/01621459.2016.1276461, 112, 519, (1047-1063), (2017).
- Joshua C. C. Chan, The Stochastic Volatility in Mean Model With Time-Varying Parameters: An Application to Inflation Modeling, Journal of Business & Economic Statistics, 10.1080/07350015.2015.1052459, 35, 1, (17-28), (2017).
- Curtis B. Storlie, Brian J. Reich, William N. Rust, Lawrence O. Ticknor, Amanda M. Bonnie, Andrew J. Montoya, Sarah E. Michalak, Spatiotemporal Modeling of Node Temperatures in Supercomputers, Journal of the American Statistical Association, 10.1080/01621459.2016.1195271, 112, 517, (92-108), (2017).
- Ephraim M. Hanks, Modeling Spatial Covariance Using the Limiting Distribution of Spatio-Temporal Random Walks, Journal of the American Statistical Association, 10.1080/01621459.2016.1224714, 112, 518, (497-507), (2016).
- Nabil Kahall, Efficient Simulation of High Dimensional Gaussian Vectors, SSRN Electronic Journal, 10.2139/ssrn.2808355, (2016).
- Enes Makalic, Daniel F. Schmidt, John L. Hopper, Bayesian Robust Regression with the Horseshoe+ Estimator, AI 2016: Advances in Artificial Intelligence, 10.1007/978-3-319-50127-7_37, (429-440), (2016).
- Anirban Bhattacharya, Antik Chakraborty, Bani K. Mallick, Fast sampling with Gaussian scale mixture priors in high-dimensional regression, Biometrika, 10.1093/biomet/asw042, 103, 4, (985-991), (2016).
- Enes Makalic, Daniel F. Schmidt, A Simple Sampler for the Horseshoe Estimator, IEEE Signal Processing Letters, 10.1109/LSP.2015.2503725, 23, 1, (179-182), (2016).
- Joshua C. C. Chan, Angelia L. Grant, On the Observed-Data Deviance Information Criterion for Volatility Modeling, Journal of Financial Econometrics, 10.1093/jjfinec/nbw002, 14, 4, (772-802), (2016).
- Fang Zhilong, Chia Ying Lee, Curt Da Silva, Felix Herrmann, Tristan Van Leeuwen, Charles Sicking, John Ferguson, undefined, SEG Technical Program Expanded Abstracts 2016, 10.1190/segam2016-13879108.1, (1390-1394), (2016).
- Olivier Feron, Francois Orieux, Jean-Francois Giovannelli, Gradient Scan Gibbs Sampler: An Efficient Algorithm for High-Dimensional Gaussian Distributions, IEEE Journal of Selected Topics in Signal Processing, 10.1109/JSTSP.2015.2510961, 10, 2, (343-352), (2016).
- Charles Sicking, John Ferguson, undefined, SEG Technical Program Expanded Abstracts 2016, 10.1190/segam2016-fwi2, (1304-1510), (2016).
- Massimo Ventrucci, Daniela Cocchi, Marian Scott, Smoothing of land use maps for trend and change detection in urbanization, Environmental and Ecological Statistics, 10.1007/s10651-016-0354-y, 23, 4, (565-584), (2016).
- Wei-han Liu, A re-examination of maturity effect of energy futures price from the perspective of stochastic volatility, Energy Economics, 10.1016/j.eneco.2016.03.026, 56, (351-362), (2016).
- Marcelo Pereyra, Philip Schniter, Emilie Chouzenoux, Jean-Christophe Pesquet, Jean-Yves Tourneret, Alfred O. Hero, Steve McLaughlin, A Survey of Stochastic Simulation and Optimization Methods in Signal Processing, IEEE Journal of Selected Topics in Signal Processing, 10.1109/JSTSP.2015.2496908, 10, 2, (224-241), (2016).
- Charles Sicking, John Ferguson, undefined, SEG Technical Program Expanded Abstracts 2016, 10.1190/segam2016-full, (1-2769), (2016).
- Elphas Okango, Henry Mwambi, Oscar Ngesa, Spatial modeling of HIV and HSV-2 among women in Kenya with spatially varying coefficients, BMC Public Health, 10.1186/s12889-016-3022-0, 16, 1, (2016).
- Leonhard Held, Isabel Natário, Sarah Elaine Fenton, Håvard Rue, Nikolaus Becker, Towards joint disease mapping, Statistical Methods in Medical Research, 10.1191/0962280205sm389oa, 14, 1, (61-82), (2016).
- Oddvar Husby, Haåvard Rue, Estimating blood vessel areas in ultrasound images using a deformable template model, Statistical Modelling: An International Journal, 10.1191/1471082X04st074oa, 4, 3, (211-226), (2016).
- Mark J Brewer, David A Elston, Matthew EA Hodgson, Anneke M Stolte, Andrew J Nolan, David J Henderson, A spatial model with ordinal responses for grazing impact data, Statistical Modelling: An International Journal, 10.1191/1471082X04st071oa, 4, 2, (127-143), (2016).
- Joshua C. C. Chan, The Stochastic Volatility in Mean Model with Time-Varying Parameters: An Application to Inflation Modeling, SSRN Electronic Journal, 10.2139/ssrn.2579988, (2015).
- M. G. Falk, C. L. Alston, C. A. McGrory, S. Clifford, E. A. Heron, D. Leonte, M. Moores, C. D. Walsh, A. N. Pettitt, K. L. Mengersen, Recent Bayesian approaches for spatial analysis of 2-D images with application to environmental modelling, Environmental and Ecological Statistics, 10.1007/s10651-015-0311-1, 22, 3, (571-600), (2015).
- F. Orieux, O. Feron, J.-F. Giovannelli, undefined, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 10.1109/ICASSP.2015.7178739, (4085-4089), (2015).
- Clement Gilavert, Said Moussaoui, Jerome Idier, Efficient Gaussian Sampling for Solving Large-Scale Inverse Problems Using MCMC, IEEE Transactions on Signal Processing, 10.1109/TSP.2014.2367457, 63, 1, (70-80), (2015).
- Ying Liu, Oliver Kosut, Alan S. Willsky, Sampling From Gaussian Markov Random Fields Using Stationary and Non-Stationary Subgraph Perturbations, IEEE Transactions on Signal Processing, 10.1109/TSP.2014.2375134, 63, 3, (576-589), (2015).
- Pengfei Liu, Ji Chen, Zhaohua Lu, Xinyuan Song, Transformation Structural Equation Models With Highly Nonnormal and Incomplete Data, Structural Equation Modeling: A Multidisciplinary Journal, 10.1080/10705511.2014.937320, 22, 3, (401-415), (2014).
- Barnabé Djegnéné, William J. McCausland, The HESSIAN Method for Models with Leverage-like Effects, Journal of Financial Econometrics, 10.1093/jjfinec/nbt027, 13, 3, (722-755), (2014).
- Eric Eisenstat, Rodney W. Strachan, Modelling Inflation Volatility, SSRN Electronic Journal, 10.2139/ssrn.2519296, (2014).
- Eric Eisenstat, Rodney W. Strachan, Modelling Inflation Volatility, SSRN Electronic Journal, 10.2139/ssrn.2400771, (2014).
- Somak Dutta, Sourabh Bhattacharya, Markov chain Monte Carlo based on deterministic transformations, Statistical Methodology, 10.1016/j.stamet.2013.08.006, 16, (100-116), (2014).
- Gregor Kastner, Sylvia Frühwirth-Schnatter, Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models, Computational Statistics & Data Analysis, 10.1016/j.csda.2013.01.002, 76, (408-423), (2014).
- Joshua C. C. Chan, Angelia Grant, Issues in Comparing Stochastic Volatility Models Using the Deviance Information Criterion, SSRN Electronic Journal, 10.2139/ssrn.2464850, (2014).
- Edmond Chow, Yousef Saad, Preconditioned Krylov Subspace Methods for Sampling Multivariate Gaussian Distributions, SIAM Journal on Scientific Computing, 10.1137/130920587, 36, 2, (A588-A608), (2014).
- Mevin B. Hooten, Jay M. Ver Hoef, Ephraim M. Hanks, Simultaneous Autoregressive (SAR) Model, Wiley StatsRef: Statistics Reference Online, 10.1002/9781118445112, (1-10), (2014).
- Stefanie Kalus, Philipp G. Sämann, Ludwig Fahrmeir, Classification of brain activation via spatial Bayesian variable selection in fMRI regression, Advances in Data Analysis and Classification, 10.1007/s11634-013-0142-6, 8, 1, (63-83), (2013).
- Chiranjit Mukherjee, Prasad S. Kasibhatla, Mike West, Spatially varying SAR models and Bayesian inference for high-resolution lattice data, Annals of the Institute of Statistical Mathematics, 10.1007/s10463-013-0426-9, 66, 3, (473-494), (2013).
- Colin Fox, Polynomial Accelerated MCMC and Other Sampling Algorithms Inspired by Computational Optimization, Monte Carlo and Quasi-Monte Carlo Methods 2012, 10.1007/978-3-642-41095-6_15, (349-366), (2013).
- Joshua C. C. Chan, Cody Yu-Ling Hsiao, Estimation of Stochastic Volatility Models with Heavy Tails and Serial Dependence, SSRN Electronic Journal, 10.2139/ssrn.2359838, (2013).
- Steven L. Scott, Hal R. Varian, Predicting the Present with Bayesian Structural Time Series, SSRN Electronic Journal, 10.2139/ssrn.2304426, (2013).
- Dong Liang, Naresh Kumar, Time-space Kriging to address the spatiotemporal misalignment in the large datasets, Atmospheric Environment, 10.1016/j.atmosenv.2013.02.034, 72, (60-69), (2013).
- Zhuhua Cai, Christopher Jermaine, Zografoula Vagena, Dionysios Logothetis, Luis L. Perez, undefined, 2013 IEEE 13th International Conference on Data Mining, 10.1109/ICDM.2013.149, (61-70), (2013).
- Ying Liu, Oliver Kosut, Alan S. Willsky, undefined, 2013 IEEE International Symposium on Information Theory, 10.1109/ISIT.2013.6620676, (2498-2502), (2013).
- Ephraim M. Hanks, Mevin B. Hooten, Circuit Theory and Model-Based Inference for Landscape Connectivity, Journal of the American Statistical Association, 10.1080/01621459.2012.724647, 108, 501, (22-33), (2013).
- Tan Bui-Thanh, Omar Ghattas, James Martin, Georg Stadler, A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems Part I: The Linearized Case, with Application to Global Seismic Inversion, SIAM Journal on Scientific Computing, 10.1137/12089586X, 35, 6, (A2494-A2523), (2013).
- Patrick Giraudoux, Francis Raoul, David Pleydell, Tiaoying Li, Xiuming Han, Jiamin Qiu, Yan Xie, Hu Wang, Akira Ito, Philip S. Craig, Drivers of Echinococcus multilocularis Transmission in China: Small Mammal Diversity, Landscape or Climate?, PLoS Neglected Tropical Diseases, 10.1371/journal.pntd.0002045, 7, 3, (e2045), (2013).
- F. Orieux, J.-F. Giovannelli, T. Rodet, A. Abergel, Estimating hyperparameters and instrument parameters in regularized inversion Illustration for Herschel /SPIRE map making , Astronomy & Astrophysics, 10.1051/0004-6361/201219950, 549, (A83), (2012).
- Erlend Aune, Jo Eidsvik, Yvo Pokern, Iterative numerical methods for sampling from high dimensional Gaussian distributions, Statistics and Computing, 10.1007/s11222-012-9326-8, 23, 4, (501-521), (2012).
- Frank B Osei, Alfred A Duker, Alfred Stein, Bayesian structured additive regression modeling of epidemic data: application to cholera, BMC Medical Research Methodology, 10.1186/1471-2288-12-118, 12, 1, (2012).
- William J. McCausland, The HESSIAN method: Highly efficient simulation smoothing, in a nutshell, Journal of Econometrics, 10.1016/j.jeconom.2011.12.003, 168, 2, (189-206), (2012).
- Guangbao Guo, Parallel Statistical Computing for Statistical Inference, Journal of Statistical Theory and Practice, 10.1080/15598608.2012.695705, 6, 3, (536-565), (2012).
- F. Orieux, O. Feron, J.-F. Giovannelli, Sampling High-Dimensional Gaussian Distributions for General Linear Inverse Problems, IEEE Signal Processing Letters, 10.1109/LSP.2012.2189104, 19, 5, (251-254), (2012).
- Albert Parker, Colin Fox, Sampling Gaussian Distributions in Krylov Spaces with Conjugate Gradients, SIAM Journal on Scientific Computing, 10.1137/110831404, 34, 3, (B312-B334), (2012).
- T. Boutelier, K. Kudo, F. Pautot, M. Sasaki, Bayesian Hemodynamic Parameter Estimation by Bolus Tracking Perfusion Weighted Imaging, IEEE Transactions on Medical Imaging, 10.1109/TMI.2012.2189890, 31, 7, (1381-1395), (2012).
- F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, J.-C Olivo-Marin, Bayesian Estimation for Optimized Structured Illumination Microscopy, IEEE Transactions on Image Processing, 10.1109/TIP.2011.2162741, 21, 2, (601-614), (2012).
- Håkon Tjelmeland, Haakon Michael Austad, Exact and Approximate Recursive Calculations for Binary Markov Random Fields Defined on Graphs, Journal of Computational and Graphical Statistics, 10.1080/10618600.2012.632236, 21, 3, (758-780), (2012).
- Ole F Christensen, Gareth O Roberts, Martin Sköld, Robust Markov chain Monte Carlo Methods for Spatial Generalized Linear Mixed Models, Journal of Computational and Graphical Statistics, 10.1198/106186006X100470, 15, 1, (1-17), (2012).
- Daniel Smith, Michael Smith, Estimation of Binary Markov Random Fields Using Markov chain Monte Carlo, Journal of Computational and Graphical Statistics, 10.1198/106186006X97817, 15, 1, (207-227), (2012).
- Finn Lindgren, Håvard Rue, Johan Lindström, An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 10.1111/j.1467-9868.2011.00777.x, 73, 4, (423-498), (2011).
- Yu Ryan Yue, Håvard Rue, Bayesian inference for additive mixed quantile regression models, Computational Statistics & Data Analysis, 10.1016/j.csda.2010.05.006, 55, 1, (84-96), (2011).
- David Higdon, C Reese, J Moulton, Jasper Vrugt, Colin Fox, Posterior Exploration for Computationally Intensive Forward Models, Handbook of Markov Chain Monte Carlo, 10.1201/b10905-17, (2011).
- See more




