Posterior probability intervals for wavelet thresholding
Abstract
Summary. We use cumulants to derive Bayesian credible intervals for wavelet regression estimates. The first four cumulants of the posterior distribution of the estimates are expressed in terms of the observed data and integer powers of the mother wavelet functions. These powers are closely approximated by linear combinations of wavelet scaling functions at an appropriate finer scale. Hence, a suitable modification of the discrete wavelet transform allows the posterior cumulants to be found efficiently for any given data set. Johnson transformations then yield the credible intervals themselves. Simulations show that these intervals have good coverage rates, even when the underlying function is inhomogeneous, where standard methods fail. In the case where the curve is smooth, the performance of our intervals remains competitive with established nonparametric regression methods.
Citing Literature
Number of times cited according to CrossRef: 10
- Antonis A. Michis, Guy P. Nason, Case study: shipping trend estimation and prediction via multiscale variance stabilisation, Journal of Applied Statistics, 10.1080/02664763.2016.1260096, 44, 15, (2672-2684), (2016).
- Guy Nason, Kara Stevens, Bayesian Wavelet Shrinkage of the Haar-Fisz Transformed Wavelet Periodogram, PLOS ONE, 10.1371/journal.pone.0137662, 10, 9, (e0137662), (2015).
- Zoltan German-Sallo, Calin Ciufudean, undefined, 2014 International Conference and Exposition on Electrical and Power Engineering (EPE), 10.1109/ICEPE.2014.6969954, (480-483), (2014).
- Norbert Reményi, Brani Vidakovic, Bayesian Wavelet Shrinkage Strategies: A Review, Multiscale Signal Analysis and Modeling, 10.1007/978-1-4614-4145-8, (317-346), (2013).
- Lawrence D. Brown, Xin Fu, Linda H. Zhao, Confidence intervals for nonparametric regression, Journal of Nonparametric Statistics, 10.1080/10485251003753201, 23, 1, (149-163), (2011).
- Paul Fearnhead, Zhen Liu, Efficient Bayesian analysis of multiple changepoint models with dependence across segments, Statistics and Computing, 10.1007/s11222-009-9163-6, 21, 2, (217-229), (2009).
- J. Hannig, T. C. M. Lee, Generalized fiducial inference for wavelet regression, Biometrika, 10.1093/biomet/asp050, 96, 4, (847-860), (2009).
- José Carlos Simon de Miranda, Sophie Dabo-Niang, Frédéric Ferraty, Probability Density Functions of the Empirical Wavelet Coefficients of Multidimensional Poisson Intensities, Functional and Operatorial Statistics, 10.1007/978-3-7908-2062-1_35, (231-236), (2008).
- Daniela De Canditiis, Pointwise Bayesian Credible Intervals for Regularized Linear Wavelet Estimators, Communications in Statistics - Simulation and Computation, 10.1080/03610910500416165, 35, 1, (61-77), (2006).
- Claudia Angelini, Theofanis Sapatinas, Empirical Bayes approach to wavelet regression using ϵ-contaminated priors, Journal of Statistical Computation and Simulation, 10.1080/00949650310001643162, 74, 10, (741-764), (2004).




