Fixed rank kriging for very large spatial data sets
Abstract
Summary. Spatial statistics for very large spatial data sets is challenging. The size of the data set, n, causes problems in computing optimal spatial predictors such as kriging, since its computational cost is of order
. In addition, a large data set is often defined on a large spatial domain, so the spatial process of interest typically exhibits non‐stationary behaviour over that domain. A flexible family of non‐stationary covariance functions is defined by using a set of basis functions that is fixed in number, which leads to a spatial prediction method that we call fixed rank kriging. Specifically, fixed rank kriging is kriging within this class of non‐stationary covariance functions. It relies on computational simplifications when n is very large, for obtaining the spatial best linear unbiased predictor and its mean‐squared prediction error for a hidden spatial process. A method based on minimizing a weighted Frobenius norm yields best estimators of the covariance function parameters, which are then substituted into the fixed rank kriging equations. The new methodology is applied to a very large data set of total column ozone data, observed over the entire globe, where n is of the order of hundreds of thousands.
Citing Literature
Number of times cited according to CrossRef: 366
- Di Wang, Kaibo Liu, Xi Zhang, Hui Wang, Spatiotemporal Multitask Learning for 3-D Dynamic Field Modeling, IEEE Transactions on Automation Science and Engineering, 10.1109/TASE.2019.2941736, 17, 2, (708-721), (2020).
- Dionissios T. Hristopulos, Dionissios T. Hristopulos, Basic Concepts and Methods of Estimation, Random Fields for Spatial Data Modeling, 10.1007/978-94-024-1918-4_12, (517-550), (2020).
- Dionissios T. Hristopulos, Dionissios T. Hristopulos, More on Spatial Prediction, Random Fields for Spatial Data Modeling, 10.1007/978-94-024-1918-4_11, (485-515), (2020).
- Kerry Cawse-Nicholson, Amy Braverman, Emily L. Kang, Miaoqi Li, Margaret Johnson, Gregory Halverson, Martha Anderson, Christopher Hain, Michael Gunson, Simon Hook, Sensitivity and uncertainty quantification for the ECOSTRESS evapotranspiration algorithm – DisALEXI, International Journal of Applied Earth Observation and Geoinformation, 10.1016/j.jag.2020.102088, 89, (102088), (2020).
- Dennis van der Meer, Dazhi Yang, Joakim Widén, Joakim Munkhammar, Clear-sky index space-time trajectories from probabilistic solar forecasts: Comparing promising copulas, Journal of Renewable and Sustainable Energy, 10.1063/1.5140604, 12, 2, (026102), (2020).
- Jing Yu Bao, Fei Ye, Ying Yang, Screening Effect in Isotropic Gaussian Processes, Acta Mathematica Sinica, English Series, 10.1007/s10114-020-7300-5, 36, 5, (512-534), (2020).
- Adil Siripatana, Olivier Le Maitre, Omar Knio, Clint Dawson, Ibrahim Hoteit, Bayesian inference of spatially varying Manning’s n coefficients in an idealized coastal ocean model using a generalized Karhunen-Loève expansion and polynomial chaos, Ocean Dynamics, 10.1007/s10236-020-01382-4, 70, 8, (1103-1127), (2020).
- Ankit Goel, Dennis S. Bernstein, undefined, 2020 American Control Conference (ACC), 10.23919/ACC45564.2020.9147916, (719-724), (2020).
- High-level land product integration methods, Advanced Remote Sensing, 10.1016/B978-0-12-815826-5.00021-0, (789-812), (2020).
- Daisuke Murakami, Yoshiki Yamagata, Toshihiro Hirano, Geostatistics and Gaussian process models, Spatial Analysis Using Big Data, 10.1016/B978-0-12-813127-5.00004-7, (57-112), (2020).
- Joshua P. French, Piotr S. Kokoszka, A sandwich smoother for spatio-temporal functional data, Spatial Statistics, 10.1016/j.spasta.2020.100413, (100413), (2020).
- Sudipto Banerjee, Modeling massive spatial datasets using a conjugate Bayesian linear modeling framework, Spatial Statistics, 10.1016/j.spasta.2020.100417, (100417), (2020).
- Noel Cressie, Thomas Suesse, Great expectations and even greater exceedances from spatially referenced data, Spatial Statistics, 10.1016/j.spasta.2020.100420, (100420), (2020).
- Yan Wang, David L. McDowell, Uncertainty quantification in materials modeling, Uncertainty Quantification in Multiscale Materials Modeling, 10.1016/B978-0-08-102941-1.00001-8, (1-40), (2020).
- Anh Tran, Dehao Liu, Lijuan He-Bitoun, Yan Wang, Data-driven acceleration of first-principles saddle point and local minimum search based on scalable Gaussian processes, Uncertainty Quantification in Multiscale Materials Modeling, 10.1016/B978-0-08-102941-1.00005-5, (119-168), (2020).
- Liu Chu, Jiajia Shi, Eduardo Souza de Cursi, Shujun Ben, Efficiency improvement of Kriging surrogate model by subset simulation in implicit expression problems, Computational and Applied Mathematics, 10.1007/s40314-020-01147-1, 39, 2, (2020).
- Daisuke Murakami, Gareth Peters, Tomoko Matsui, Spatiotemporal Analysis of Urban Heatwaves Using Tukey G-and-H Random Field Models, SSRN Electronic Journal, 10.2139/ssrn.3575789, (2020).
- Matthew Edwards, Stefano Castruccio, Dorit Hammerling, Marginally parameterized spatio-temporal models and stepwise maximum likelihood estimation, Computational Statistics & Data Analysis, 10.1016/j.csda.2020.107018, (107018), (2020).
- Annamaria Castrignanò, Gabriele Buttafuoco, Data processing, Agricultural Internet of Things and Decision Support for Precision Smart Farming, 10.1016/B978-0-12-818373-1.00003-2, (139-182), (2020).
- Esmail Yarali, Firoozeh Rivaz, Incorporating covariate information in the covariance structure of misaligned spatial data, Environmetrics, 10.1002/env.2623, 31, 6, (2020).
- Ashton Wiens, Douglas Nychka, William Kleiber, Modeling spatial data using local likelihood estimation and a Matérn to spatial autoregressive translation, Environmetrics, 10.1002/env.2652, 31, 6, (2020).
- Alexandre M.J.-C. Wadoux, Budiman Minasny, Alex B. McBratney, Machine learning for digital soil mapping: Applications, challenges and suggested solutions, Earth-Science Reviews, 10.1016/j.earscirev.2020.103359, (103359), (2020).
- Daniel Zilber, Matthias Katzfuss, Vecchia-Laplace approximations of generalized Gaussian processes for big non-Gaussian spatial data, Computational Statistics & Data Analysis, 10.1016/j.csda.2020.107081, (107081), (2020).
- Roberto Benedetti, Thomas Suesse, Federica Piersimoni, Spatial auto‐correlation and auto‐regressive models estimation from sample survey data, Biometrical Journal, 10.1002/bimj.201800225, 62, 6, (1494-1507), (2020).
- Marius Appel, Edzer Pebesma, Spatiotemporal multi-resolution approximations for analyzing global environmental data, Spatial Statistics, 10.1016/j.spasta.2020.100465, 38, (100465), (2020).
- Bin Zou, Ning Liu, Wei Wang, Huihui Feng, Xiangping Liu, Yan Lin, An Effective and Efficient Enhanced Fixed Rank Smoothing Method for the Spatiotemporal Fusion of Multiple-Satellite Aerosol Optical Depth Products, Remote Sensing, 10.3390/rs12071102, 12, 7, (1102), (2020).
- Matthias Katzfuss, Joseph Guinness, Wenlong Gong, Daniel Zilber, Vecchia Approximations of Gaussian-Process Predictions, Journal of Agricultural, Biological and Environmental Statistics, 10.1007/s13253-020-00401-7, (2020).
- Yang Li, Zhengyuan Zhu, Spatio-temporal modeling of global ozone data using convolution, Japanese Journal of Statistics and Data Science, 10.1007/s42081-019-00069-5, (2020).
- Marco A. R. Ferreira, Bayesian spatial and spatiotemporal models based on multiscale factorizations, WIREs Computational Statistics , 10.1002/wics.1509, 0, 0, (2020).
- Eric W. Fox, Jay M. Ver Hoef, Anthony R. Olsen, Comparing spatial regression to random forests for large environmental data sets, PLOS ONE, 10.1371/journal.pone.0229509, 15, 3, (e0229509), (2020).
- Emily C. Hector, Peter X.-K. Song, A Distributed and Integrated Method of Moments for High-Dimensional Correlated Data Analysis, Journal of the American Statistical Association, 10.1080/01621459.2020.1736082, (1-14), (2020).
- Lucian Stefanita Grigore, Iustin Priescu, Daniela Joita, Ionica Oncioiu, The Integration of Collaborative Robot Systems and Their Environmental Impacts, Processes, 10.3390/pr8040494, 8, 4, (494), (2020).
- Da Huang, Qiwei Yao, Rongmao Zhang, Krigings over space and time based on latent low-dimensional structures, Science China Mathematics, 10.1007/s11425-019-1606-2, (2020).
- Cheng Meng, Xinlian Zhang, Jingyi Zhang, Wenxuan Zhong, More efficient approximation of smoothing splines via space-filling basis selection, Biometrika, 10.1093/biomet/asaa019, (2020).
- Emilio Porcu, Reinhard Furrer, Douglas Nychka, 30 Years of space–time covariance functions, WIREs Computational Statistics , 10.1002/wics.1512, 0, 0, (2020).
- Shifeng Xiong, The Reconstruction Approach: From Interpolation to Regression, Technometrics, 10.1080/00401706.2020.1764869, (1-11), (2020).
- Angela Cersosimo, Carmine Serio, Guido Masiello, TROPOMI NO2 Tropospheric Column Data: Regridding to 1 km Grid-Resolution and Assessment of their Consistency with In Situ Surface Observations, Remote Sensing, 10.3390/rs12142212, 12, 14, (2212), (2020).
- Dean Koch, Subhash Lele, Mark A. Lewis, Computationally simple anisotropic lattice covariograms, Environmental and Ecological Statistics, 10.1007/s10651-020-00456-2, (2020).
- Daisuke Murakami, Narumasa Tsutsumida, Takahiro Yoshida, Tomoki Nakaya, Binbin Lu, Scalable GWR: A Linear-Time Algorithm for Large-Scale Geographically Weighted Regression with Polynomial Kernels, Annals of the American Association of Geographers, 10.1080/24694452.2020.1774350, (1-22), (2020).
- Matthew J. Heaton, Candace Berrett, R. Justin DeRose, Matthew F. Bekker, Spatial and covariate-varying relationships among dominant tree species in Utah, Environmental and Ecological Statistics, 10.1007/s10651-020-00460-6, (2020).
- Dionissios T. Hristopulos, Anastassia Baxevani, Effective probability distribution approximation for the reconstruction of missing data, Stochastic Environmental Research and Risk Assessment, 10.1007/s00477-020-01765-5, (2020).
- T. Stough, N. Cressie, E. L. Kang, A. M. Michalak, K. Sahr, Spatial analysis and visualization of global data on multi-resolution hexagonal grids, Japanese Journal of Statistics and Data Science, 10.1007/s42081-020-00077-w, (2020).
- Mithun Ghosh, Yongxiang Li, Li Zeng, Zijun Zhang, Qiang Zhou, Modeling multivariate profiles using Gaussian process-controlled B-splines, IISE Transactions, 10.1080/24725854.2020.1798038, (1-12), (2020).
- Peter Rayner, Data assimilation using an ensemble of models: a hierarchical approach, Atmospheric Chemistry and Physics, 10.5194/acp-20-3725-2020, 20, 6, (3725-3737), (2020).
- Samira Zahmatkesh, Mohsen Mohammadzadeh, Bayesian prediction of spatial data with non-ignorable missingness, Statistical Papers, 10.1007/s00362-020-01186-0, (2020).
- Pulong Ma, Emily L. Kang, A Fused Gaussian Process Model for Very Large Spatial Data, Journal of Computational and Graphical Statistics, 10.1080/10618600.2019.1704293, (1-11), (2020).
- Mitchell Krock, William Kleiber, Stephen Becker, Nonstationary modeling with sparsity for spatial data via the basis graphical lasso, Journal of Computational and Graphical Statistics, 10.1080/10618600.2020.1811103, (1-36), (2020).
- Andrew Zammit-Mangion, Jonathan Rougier, Multi-scale process modelling and distributed computation for spatial data, Statistics and Computing, 10.1007/s11222-020-09962-6, (2020).
- Michele Peruzzi, Sudipto Banerjee, Andrew O. Finley, Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian Processes on Partitioned Domains, Journal of the American Statistical Association, 10.1080/01621459.2020.1833889, (1-31), (2020).
- Shih-Hao Huang, Hsin-Cheng Huang, Ruey S. Tsay, Guangming Pan, Testing Independence Between Two Spatial Random Fields, Journal of Agricultural, Biological and Environmental Statistics, 10.1007/s13253-020-00421-3, (2020).
- K. Shuvo Bakar, Nicholas Biddle, Philip Kokic, Huidong Jin, A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys, Journal of the Royal Statistical Society: Series A (Statistics in Society), 10.1111/rssa.12526, 183, 2, (535-563), (2019).
- Candace Berrett, William F. Christensen, Stephan R. Sain, Nathan Sandholtz, David W. Coats, Claudia Tebaldi, Hedibert F. Lopes, Modeling sea‐level processes on the U.S. Atlantic Coast, Environmetrics, 10.1002/env.2609, 31, 4, (2019).
- Pulong Ma, Emily L. Kang, Spatio‐Temporal data fusion for massive sea surface temperature data from MODIS and AMSR‐E instruments, Environmetrics, 10.1002/env.2594, 31, 2, (2019).
- Alexander Litvinenko, Ying Sun, Marc G. Genton, David E. Keyes, Likelihood approximation with hierarchical matrices for large spatial datasets, Computational Statistics & Data Analysis, 10.1016/j.csda.2019.02.002, (2019).
- Daisuke Murakami, Daniel A. Griffith, Spatially varying coefficient modeling for large datasets: Eliminating N from spatial regressions, Spatial Statistics, 10.1016/j.spasta.2019.02.003, (2019).
- Konstantin Krivoruchko, Alexander Gribov, Evaluation of empirical Bayesian kriging, Spatial Statistics, 10.1016/j.spasta.2019.100368, (100368), (2019).
- Gui Jin, Zhaohua Li, Xiangzheng Deng, Jun Yang, Dongdong Chen, Wenqiang Li, An analysis of spatiotemporal patterns in Chinese agricultural productivity between 2004 and 2014, Ecological Indicators, 10.1016/j.ecolind.2018.05.073, 105, (591-600), (2019).
- Peter Kalmus, Brian H. Kahn, Sean W. Freeman, Susan C. van den Heever, Trajectory-Enhanced AIRS Observations of Environmental Factors Driving Severe Convective Storms, Monthly Weather Review, 10.1175/MWR-D-18-0055.1, 147, 5, (1633-1653), (2019).
- Maïna André, Richard Perez, Ted Soubdhan, James Schlemmer, Rudy Calif, Stéphanie Monjoly, Preliminary assessment of two spatio-temporal forecasting technics for hourly satellite-derived irradiance in a complex meteorological context, Solar Energy, 10.1016/j.solener.2018.11.010, 177, (703-712), (2019).
- Mohamad Sakizadeh, Spatial analysis of total dissolved solids in Dezful Aquifer: Comparison between universal and fixed ranked kriging, Journal of Contaminant Hydrology, 10.1016/j.jconhyd.2019.01.001, (2019).
- Ghadeer Mahdi, Avishek Chakraborty, Mark E. Arnold, Anthony G. Rebelo, Efficient Bayesian modeling of large lattice data using spectral properties of Laplacian matrix, Spatial Statistics, 10.1016/j.spasta.2019.01.003, (2019).
- Noel Cressie, Cécile Hardouin, A diagonally weighted matrix norm between two covariance matrices, Spatial Statistics, 10.1016/j.spasta.2019.01.001, (2019).
- Bo Wang, Qiong Zhang, Wei Xie, Bayesian Sequential Data Collection for Stochastic Simulation Calibration, European Journal of Operational Research, 10.1016/j.ejor.2019.01.073, (2019).
- Heli Gao, Jonathan R. Bradley, Bayesian analysis of areal data with unknown adjacencies using the stochastic edge mixed effects model, Spatial Statistics, 10.1016/j.spasta.2019.100357, (100357), (2019).
- Cécile Hardouin, A variational method for parameter estimation in a logistic spatial regression, Spatial Statistics, 10.1016/j.spasta.2019.100365, (100365), (2019).
- Dazhi Yang, Christian A. Gueymard, Producing high-quality solar resource maps by integrating high- and low-accuracy measurements using Gaussian processes, Renewable and Sustainable Energy Reviews, 10.1016/j.rser.2019.109260, 113, (109260), (2019).
- Pulong Ma, Bledar A. Konomi, Emily L. Kang, An additive approximate Gaussian process model for large spatio‐temporal data, Environmetrics, 10.1002/env.2569, 30, 8, (2019).
- B. A. Konomi, A. A. Hanandeh, P. Ma, E. L. Kang, Computationally efficient nonstationary nearest‐neighbor Gaussian process models using data‐driven techniques, Environmetrics, 10.1002/env.2571, 30, 8, (2019).
- Daniel Fryer, Andriy Olenko, Spherical Data Handling and Analysis with R package rcosmo, Statistics and Data Science, 10.1007/978-981-15-1960-4_15, (211-225), (2019).
- E. Porcu, S. Castruccio, A. Alegría, P. Crippa, Axially symmetric models for global data: A journey between geostatistics and stochastic generators, Environmetrics, 10.1002/env.2555, 30, 1, (2019).
- P. A. White, E. Porcu, Nonseparable covariance models on circles cross time: A study of Mexico City ozone, Environmetrics, 10.1002/env.2558, 30, 5, (2019).
- Sameh Abdulah, Hatem Ltaief, Ying Sun, Marc G. Genton, David E. Keyes, undefined, 2019 IEEE 26th International Conference on High Performance Computing, Data, and Analytics (HiPC), 10.1109/HiPC.2019.00028, (152-162), (2019).
- C. Cahalane, A. Magee, X. Monteys, G. Casal, J. Hanafin, P. Harris, A comparison of Landsat 8, RapidEye and Pleiades products for improving empirical predictions of satellite-derived bathymetry, Remote Sensing of Environment, 10.1016/j.rse.2019.111414, 233, (111414), (2019).
- Craig Wang, Reinhard Furrer, Efficient inference of generalized spatial fusion models with flexible specification, Stat, 10.1002/sta4.216, 8, 1, (2019).
- Eun-Hye Yoo, Andrew Zammit-Mangion, Michael G. Chipeta, Adaptive spatial sampling design for environmental field prediction using low-cost sensing technologies, Atmospheric Environment, 10.1016/j.atmosenv.2019.117091, (117091), (2019).
- Wenjing Wang, Nan Chen, Xi Chen, Linchang Yang, A Variational Inference-Based Heteroscedastic Gaussian Process Approach for Simulation Metamodeling, ACM Transactions on Modeling and Computer Simulation, 10.1145/3299871, 29, 1, (1-22), (2019).
- Di Wang, Kaibo Liu, Xi Zhang, Modeling of a three-dimensional dynamic thermal field under grid-based sensor networks in grain storage, IISE Transactions, 10.1080/24725854.2018.1504356, (1-16), (2019).
- Casey M. Jelsema, Richard K. Kwok, Shyamal D. Peddada, Threshold knot selection for large-scale spatial models with applications to the Deepwater Horizon disaster , Journal of Statistical Computation and Simulation, 10.1080/00949655.2019.1610884, (1-17), (2019).
- Qiang Shi, Wujiao Dai, Rock Santerre, Zhiwei Li, Ning Liu, Spatially Heterogeneous Land Surface Deformation Data Fusion Method Based on an Enhanced Spatio-Temporal Random Effect Model, Remote Sensing, 10.3390/rs11091084, 11, 9, (1084), (2019).
- Anteneh Asmare Godana, Samuel Musili Mwalili, George Otieno Orwa, Dynamic spatiotemporal modeling of the infected rate of visceral leishmaniasis in human in an endemic area of Amhara regional state, Ethiopia, PLOS ONE, 10.1371/journal.pone.0212934, 14, 3, (e0212934), (2019).
- Yoseline Angel, Rasmus Houborg, Matthew F. McCabe, Reconstructing Cloud Contaminated Pixels Using Spatiotemporal Covariance Functions and Multitemporal Hyperspectral Imagery, Remote Sensing, 10.3390/rs11101145, 11, 10, (1145), (2019).
- K. Shuvo Bakar, Interpolation of daily rainfall data using censored Bayesian spatially varying model, Computational Statistics, 10.1007/s00180-019-00911-0, (2019).
- Jonathan R. Bradley, Scott H. Holan, Christopher K. Wikle, Bayesian Hierarchical Models With Conjugate Full-Conditional Distributions for Dependent Data From the Natural Exponential Family, Journal of the American Statistical Association, 10.1080/01621459.2019.1677471, (1-16), (2019).
- Miaoqi Li, Emily L. Kang, Randomized algorithms of maximum likelihood estimation with spatial autoregressive models for large-scale networks, Statistics and Computing, 10.1007/s11222-019-09862-4, (2019).
- Christopher D. Vanlengenberg, Wenshuang Wang, Haimeng Zhang, Data generation for axially symmetric processes on the sphere, Communications in Statistics - Simulation and Computation, 10.1080/03610918.2019.1588309, (1-20), (2019).
- Sierra Pugh, Matthew J. Heaton, Jeff Svedin, Neil Hansen, Spatiotemporal Lagged Models for Variable Rate Irrigation in Agriculture, Journal of Agricultural, Biological and Environmental Statistics, 10.1007/s13253-019-00365-3, (2019).
- Matthew J. Heaton, Candace Berrett, Sierra Pugh, Amber Evans, Chantel Sloan, Modeling Bronchiolitis Incidence Proportions in the Presence of Spatio-Temporal Uncertainty, Journal of the American Statistical Association, 10.1080/01621459.2019.1609480, (1-29), (2019).
- Zahra Barzegar, Firoozeh Rivaz, A scalable Bayesian nonparametric model for large spatio-temporal data, Computational Statistics, 10.1007/s00180-019-00905-y, (2019).
- Jacinta Holloway, Kate J. Helmstedt, Kerrie Mengersen, Michael Schmidt, A Decision Tree Approach for Spatially Interpolating Missing Land Cover Data and Classifying Satellite Images, Remote Sensing, 10.3390/rs11151796, 11, 15, (1796), (2019).
- Yung-Huei Chiou, Hong-Ding Yang, Chun-Shu Chen, An adjusted parameter estimation for spatial regression with spatial confounding, Stochastic Environmental Research and Risk Assessment, 10.1007/s00477-019-01716-9, (2019).
- Milan Žukovič, Michal Borovský, Matúš Lach, Dionissios T. Hristopulos, GPU-Accelerated Simulation of Massive Spatial Data Based on the Modified Planar Rotator Model, Mathematical Geosciences, 10.1007/s11004-019-09835-3, (2019).
- Daisuke Murakami, Daniel A. Griffith, A memory-free spatial additive mixed modeling for big spatial data, Japanese Journal of Statistics and Data Science, 10.1007/s42081-019-00063-x, (2019).
- Qiong Zhang, Youngdeok Hwang, Sequential Model-Based Optimization for Continuous Inputs with Finite Decision Space, Technometrics, 10.1080/00401706.2019.1665589, (1-13), (2019).
- Mengyang Gu, Yanxun Xu, Fast Nonseparable Gaussian Stochastic Process With Application to Methylation Level Interpolation, Journal of Computational and Graphical Statistics, 10.1080/10618600.2019.1665534, (1-11), (2019).
- Mevin B. Hooten, Devin S. Johnson, Brian M. Brost, Making Recursive Bayesian Inference Accessible, The American Statistician, 10.1080/00031305.2019.1665584, (1-10), (2019).
- Kai Qu, Jonathan R. Bradley, Xufeng Niu, Boundary Detection Using a Bayesian Hierarchical Model for Multiscale Spatial Data, Technometrics, 10.1080/00401706.2019.1677268, (1-13), (2019).
- Kai-Lan Chang, Owen R. Cooper, J. Jason West, Marc L. Serre, Martin G. Schultz, Meiyun Lin, Virginie Marécal, Béatrice Josse, Makoto Deushi, Kengo Sudo, Junhua Liu, Christoph A. Keller, A new method (M<sup>3</sup>Fusion v1) for combining observations and multiple model output for an improved estimate of the global surface ozone distribution, Geoscientific Model Development, 10.5194/gmd-12-955-2019, 12, 3, (955-978), (2019).
- Kai‐Lan Chang, Serge Guillas, Computer model calibration with large non‐stationary spatial outputs: application to the calibration of a climate model, Journal of the Royal Statistical Society: Series C (Applied Statistics), 10.1111/rssc.12309, 68, 1, (51-78), (2018).
- Mark R. Bass, Sujit K. Sahu, Dynamically Updated Spatially Varying Parameterizations of Hierarchical Bayesian Models for Spatial Data, Journal of Computational and Graphical Statistics, 10.1080/10618600.2018.1482761, 28, 1, (105-116), (2018).
- Daisuke Murakami, Daniel A. Griffith, Eigenvector Spatial Filtering for Large Data Sets: Fixed and Random Effects Approaches, Geographical Analysis, 10.1111/gean.12156, 51, 1, (23-49), (2018).
- See more




