Sparse additive models
Abstract
Summary. We present a new class of methods for high dimensional non‐parametric regression and classification called sparse additive models. Our methods combine ideas from sparse linear modelling and additive non‐parametric regression. We derive an algorithm for fitting the models that is practical and effective even when the number of covariates is larger than the sample size. Sparse additive models are essentially a functional version of the grouped lasso of Yuan and Lin. They are also closely related to the COSSO model of Lin and Zhang but decouple smoothing and sparsity, enabling the use of arbitrary non‐parametric smoothers. We give an analysis of the theoretical properties of sparse additive models and present empirical results on synthetic and real data, showing that they can be effective in fitting sparse non‐parametric models in high dimensional data.
Citing Literature
Number of times cited according to CrossRef: 151
- Mana Jalali, Vassilis Kekatos, Nikolaos Gatsis, Deepjyoti Deka, Designing Reactive Power Control Rules for Smart Inverters Using Support Vector Machines, IEEE Transactions on Smart Grid, 10.1109/TSG.2019.2942850, 11, 2, (1759-1770), (2020).
- N. Dalmasso, T. Pospisil, A.B. Lee, R. Izbicki, P.E. Freeman, A.I. Malz, Conditional density estimation tools in python and R with applications to photometric redshifts and likelihood-free cosmological inference, Astronomy and Computing, 10.1016/j.ascom.2019.100362, (100362), (2020).
- Peipei Yuan, Xinge You, Hong Chen, Qinmu Peng, Yue Zhao, Zhou Xu, Xiao-Yuan Jing, Zhenyu He, Group Sparse Additive Machine with Average Top-k Loss, Neurocomputing, 10.1016/j.neucom.2020.01.104, (2020).
- Yinglin Xia, Correlation and association analyses in microbiome study integrating multiomics in health and disease, , 10.1016/bs.pmbts.2020.04.003, (2020).
- Paulo J. G. Lisboa, Sandra Ortega-Martorell, Ivan Olier, Explaining the Neural Network: A Case Study to Model the Incidence of Cervical Cancer, Information Processing and Management of Uncertainty in Knowledge-Based Systems, 10.1007/978-3-030-50146-4_43, (585-598), (2020).
- Jianqing Fan, Yang Feng, Lucy Xia, A projection-based conditional dependence measure with applications to high-dimensional undirected graphical models, Journal of Econometrics, 10.1016/j.jeconom.2019.12.016, (2020).
- Tianyi Lin, Chengyou Fan, Mengdi Wang, Michael I. Jordan, undefined, 2020 American Control Conference (ACC), 10.23919/ACC45564.2020.9147515, (126-131), (2020).
- Xiao-Long Qi, Kai Xing, Zhen Huang, Yu Chen, Liang Wang, Li-Chang Zhang, Xi-Hui Sheng, Xiang-Guo Wang, He-Min Ni, Yong Guo, Comparative transcriptome analysis digs out genes related to antifreeze between fresh and frozen–thawed rooster sperm, Poultry Science, 10.1016/j.psj.2020.01.022, (2020).
- Sergios Theodoridis, Learning in Reproducing Kernel Hilbert Spaces, Machine Learning, 10.1016/B978-0-12-818803-3.00022-2, (531-594), (2020).
- Shishi Liu, Xiangjie Li, Jingxiao Zhang, Ultrahigh dimensional feature screening for additive model with multivariate response, Journal of Statistical Computation and Simulation, 10.1080/00949655.2019.1703371, (1-25), (2020).
- Hong Chen, Changying Guo, Huijuan Xiong, Yingjie Wang, Sparse additive machine with ramp loss, Analysis and Applications, 10.1142/S0219530520400011, (1-20), (2020).
- Hyung Park, Eva Petkova, Thaddeus Tarpey, R Todd Ogden, A sparse additive model for treatment effect-modifier selection, Biostatistics, 10.1093/biostatistics/kxaa032, (2020).
- Junwei Lu, Mladen Kolar, Han Liu, Kernel Meets Sieve: Post-Regularization Confidence Bands for Sparse Additive Model, Journal of the American Statistical Association, 10.1080/01621459.2019.1689984, (1-16), (2020).
- Ray Bai, Gemma E. Moran, Joseph L. Antonelli, Yong Chen, Mary R. Boland, Spike-and-Slab Group Lassos for Grouped Regression and Sparse Generalized Additive Models, Journal of the American Statistical Association, 10.1080/01621459.2020.1765784, (1-14), (2020).
- Jialiang Li, Jing Lv, Alan T. K. Wan, Jun Liao, AdaBoost Semiparametric Model Averaging Prediction for Multiple Categories, Journal of the American Statistical Association, 10.1080/01621459.2020.1790375, (1-15), (2020).
- Hongmei Lin, Heng Lian, Hua Liang, Rank reduction for high-dimensional generalized additive models, Journal of Multivariate Analysis, 10.1016/j.jmva.2019.05.005, (2019).
- Danica Marinac‐Dabic, Sharon‐Lise Normand, Art Sedrakyan, Thomas P. Gross, Epidemiologic Studies of Medical Devices, Pharmacoepidemiology, 10.1002/9781119413431, (496-523), (2019).
- Chun-Chen Tu, Pin-Yu Chen, Naisyin Wang, Improving Prediction Efficacy Through Abnormality Detection and Data Preprocessing, IEEE Access, 10.1109/ACCESS.2019.2930257, 7, (103794-103805), (2019).
- Héctor Climente-González, Chloé-Agathe Azencott, Samuel Kaski, Makoto Yamada, Block HSIC Lasso: model-free biomarker detection for ultra-high dimensional data, Bioinformatics, 10.1093/bioinformatics/btz333, 35, 14, (i427-i435), (2019).
- Changming Cheng, Er-wei Bai, Zhike Peng, Consistent Variable Selection for a Nonparametric Nonlinear System by Inverse and Contour Regressions, IEEE Transactions on Automatic Control, 10.1109/TAC.2018.2867252, 64, 7, (2653-2664), (2019).
- Jiaqing Lv, Mirosław Pawlak, Additive modeling and prediction of transient stability boundary in large-scale power systems using the Group Lasso algorithm, International Journal of Electrical Power & Energy Systems, 10.1016/j.ijepes.2019.05.068, 113, (963-970), (2019).
- Martin J. Wainwright, , High-Dimensional Statistics, 10.1017/9781108627771, (2019).
- Er-Wei Bai, Changming Cheng, Wen-Xiao Zhao, Variable selection of high-dimensional non-parametric nonlinear systems by derivative averaging to avoid the curse of dimensionality, Automatica, 10.1016/j.automatica.2018.11.019, 101, (138-149), (2019).
- Guangren Yang, Weixin Yao, Sijia Xiang, Sure independence screening in ultrahigh dimensional generalized additive models, Journal of Statistical Planning and Inference, 10.1016/j.jspi.2018.04.004, 199, (126-135), (2019).
- Vipul Goyal, Mengyu Xu, Jayanta S. Kapat, undefined, AIAA Propulsion and Energy 2019 Forum, 10.2514/6.2019-4088, (2019).
- Yu Fujimoto, Saya Murakami, Nanae Kaneko, Hideki Fuchikami, Toshirou Hattori, Yasuhiro Hayashi, Machine Learning Approach for Graphical Model-Based Analysis of Energy-Aware Growth Control in Plant Factories, IEEE Access, 10.1109/ACCESS.2019.2903830, (1-1), (2019).
- Changming Cheng, Er-wei Bai, Testing if a nonlinear system is additive or not, Automatica, 10.1016/j.automatica.2019.02.053, 104, (134-140), (2019).
- Kai He, Shuai Huang, Xiaoning Qian, Early Detection and Risk Assessment for Chronic Disease with Irregular Longitudinal Data Analysis, Journal of Biomedical Informatics, 10.1016/j.jbi.2019.103231, (103231), (2019).
- Changying Guo, Biqin Song, Yingjie Wang, Hong Chen, Huijuan Xiong, Robust Variable Selection and Estimation Based on Kernel Modal Regression, Entropy, 10.3390/e21040403, 21, 4, (403), (2019).
- Hemant Tyagi, Jan Vybiral, Learning General Sparse Additive Models from Point Queries in High Dimensions, Constructive Approximation, 10.1007/s00365-019-09461-6, (2019).
- Hunter R. Merrill, Xueying Tang, Nikolay Bliznyuk, Spatio-temporal additive regression model selection for urban water demand, Stochastic Environmental Research and Risk Assessment, 10.1007/s00477-019-01682-2, (2019).
- Sayanti Guha Majumdar, Anil Rai, Dwijesh C. Mishra, Integrated Framework for Selection of Additive and Nonadditive Genetic Markers for Genomic Selection, Journal of Computational Biology, 10.1089/cmb.2019.0223, (2019).
- Hidetoshi Matsui, Yuta Umezu, Variable selection in multivariate linear models for functional data via sparse regularization, Japanese Journal of Statistics and Data Science, 10.1007/s42081-019-00055-x, (2019).
- Chih-Li Sung, Wenjia Wang, Matthew Plumlee, Benjamin Haaland, Multiresolution Functional ANOVA for Large-Scale, Many-Input Computer Experiments, Journal of the American Statistical Association, 10.1080/01621459.2019.1595630, (1-23), (2019).
- Carlos Valencia, Sergio Cabrales, Laura Garcia, Juan Ramirez, Diego Calderona, Generalized additive model with embedded variable selection for bankruptcy prediction: Prediction versus interpretation, Cogent Economics & Finance, 10.1080/23322039.2019.1597956, 7, 1, (2019).
- Minsuk Shin, Anirban Bhattacharya, Valen E. Johnson, Functional Horseshoe Priors for Subspace Shrinkage, Journal of the American Statistical Association, 10.1080/01621459.2019.1654875, (1-14), (2019).
- Qi Gao, Randy C. S. Lai, Thomas C. M. Lee, Yao Li, Uncertainty Quantification for High-Dimensional Sparse Nonparametric Additive Models, Technometrics, 10.1080/00401706.2019.1665591, (1-12), (2019).
- Raymond K. W. Wong, Yehua Li, Zhengyuan Zhu, Partially Linear Functional Additive Models for Multivariate Functional Data, Journal of the American Statistical Association, 10.1080/01621459.2017.1411268, 114, 525, (406-418), (2018).
- Takuma Yoshida, Semiparametric method for model structure discovery in additive regression models, Econometrics and Statistics, 10.1016/j.ecosta.2017.02.005, 5, (124-136), (2018).
- Jaroslaw Harezlak, David Ruppert, Matt P. Wand, Jaroslaw Harezlak, David Ruppert, Matt P. Wand, Generalized Additive Models, Semiparametric Regression with R, 10.1007/978-1-4939-8853-2_3, (71-128), (2018).
- Shihao Gu, Bryan T. Kelly, Dacheng Xiu, Empirical Asset Pricing via Machine Learning, SSRN Electronic Journal, 10.2139/ssrn.3281018, (2018).
- Shihao Gu, Bryan T. Kelly, Dacheng Xiu, Empirical Asset Pricing Via Machine Learning, SSRN Electronic Journal, 10.2139/ssrn.3159577, (2018).
- Matthew Blackwell, Adam Glynn, How to Make Causal Inferences with Time-Series Cross-Sectional Data Under Selection on Observables, SSRN Electronic Journal, 10.2139/ssrn.3176910, (2018).
- Hao Zhang, Shinji Nakadai, Kenji Fukumizu, From Black-Box to White-Box: Interpretable Learning with Kernel Machines, Machine Learning and Data Mining in Pattern Recognition, 10.1007/978-3-319-96136-1_18, (213-227), (2018).
- Takuma Yoshida, Kanta Naito, Regression with stagewise minimization on risk function, Computational Statistics & Data Analysis, 10.1016/j.csda.2018.12.011, (2018).
- Tsung-Yu Hsieh, Yasser EL-Manzalawy, Yiwei Sun, Vasant Honavar, Compositional Stochastic Average Gradient for Machine Learning and Related Applications, Intelligent Data Engineering and Automated Learning – IDEAL 2018, 10.1007/978-3-030-03493-1_77, (740-752), (2018).
- Hao Helen Zhang, Nonparametric Methods for Big Data Analytics, Handbook of Big Data Analytics, 10.1007/978-3-319-18284-1_5, (103-124), (2018).
- Xiaoming Huo, Cheng Huang, Xuelei Sherry Ni, Scattered Data and Aggregated Inference, Handbook of Big Data Analytics, 10.1007/978-3-319-18284-1_4, (75-102), (2018).
- Makoto Yamada, Jiliang Tang, Jose Lugo-Martinez, Ermin Hodzic, Raunak Shrestha, Avishek Saha, Hua Ouyang, Dawei Yin, Hiroshi Mamitsuka, Cenk Sahinalp, Predrag Radivojac, Filippo Menczer, Yi Chang, Ultra High-Dimensional Nonlinear Feature Selection for Big Biological Data, IEEE Transactions on Knowledge and Data Engineering, 10.1109/TKDE.2018.2789451, 30, 7, (1352-1365), (2018).
- Yanfang Tao, Biqin Song, Luoqing Li, Error analysis for coefficient-based regularized regression in additive models, Statistics & Probability Letters, 10.1016/j.spl.2017.10.001, 134, (22-28), (2018).
- Ning Bi, Jun Tan, Jian-Huang Lai, Ching Y. Suen, High-dimensional supervised feature selection via optimized kernel mutual information, Expert Systems with Applications, 10.1016/j.eswa.2018.04.037, 108, (81-95), (2018).
- Yong He, Xinsheng Zhang, Liwen Zhang, Variable selection for high dimensional Gaussian copula regression model: An adaptive hypothesis testing procedure, Computational Statistics & Data Analysis, 10.1016/j.csda.2018.03.003, 124, (132-150), (2018).
- Tung Duy Luu, Jalal Fadili, Christophe Chesneau, PAC-Bayesian risk bounds for group-analysis sparse regression by exponential weighting, Journal of Multivariate Analysis, 10.1016/j.jmva.2018.12.004, (2018).
- Guangren Yang, Sumin Hou, Luheng Wang, Yanqing Sun, Feature screening in ultrahigh-dimensional additive Cox model, Journal of Statistical Computation and Simulation, 10.1080/00949655.2017.1422127, 88, 6, (1117-1133), (2018).
- Yong Niu, Riquan Zhang, Jicai Liu, Huapeng Li, Nonparametric independence screening for ultra-high-dimensional longitudinal data under additive models, Journal of Nonparametric Statistics, 10.1080/10485252.2018.1497797, 30, 4, (884-905), (2018).
- Antonio R. Linero, Bayesian Regression Trees for High-Dimensional Prediction and Variable Selection, Journal of the American Statistical Association, 10.1080/01621459.2016.1264957, 113, 522, (626-636), (2018).
- Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J. Tibshirani, Larry Wasserman, Distribution-Free Predictive Inference for Regression, Journal of the American Statistical Association, 10.1080/01621459.2017.1307116, 113, 523, (1094-1111), (2018).
- Faming Liang, Qizhai Li, Lei Zhou, Bayesian Neural Networks for Selection of Drug Sensitive Genes, Journal of the American Statistical Association, 10.1080/01621459.2017.1409122, 113, 523, (955-972), (2018).
- MATTHEW BLACKWELL, ADAM N. GLYNN, How to Make Causal Inferences with Time-Series Cross-Sectional Data under Selection on Observables, American Political Science Review, 10.1017/S0003055418000357, (1-16), (2018).
- Asad Haris, Ali Shojaie, Noah Simon, Nonparametric regression with adaptive truncation via a convex hierarchical penalty, Biometrika, 10.1093/biomet/asy056, (2018).
- Leyuan Zhang, Yangding Li, Jilian Zhang, Pengqing Li, Jiaye Li, Nonlinear sparse feature selection algorithm via low matrix rank constraint, Multimedia Tools and Applications, 10.1007/s11042-018-6909-1, (2018).
- Morteza Amini, Mahdi Roozbeh, Improving the prediction performance of the LASSO by subtracting the additive structural noises, Computational Statistics, 10.1007/s00180-018-0849-0, (2018).
- Rafael Izbicki, Ann B. Lee, Taylor Pospisil, ABC–CDE: Toward Approximate Bayesian Computation With Complex High-Dimensional Data and Limited Simulations, Journal of Computational and Graphical Statistics, 10.1080/10618600.2018.1546594, (1-20), (2018).
- Yingying Fan, Emre Demirkaya, Gaorong Li, Jinchi Lv, RANK: Large-Scale Inference With Graphical Nonlinear Knockoffs, Journal of the American Statistical Association, 10.1080/01621459.2018.1546589, (1-43), (2018).
- Junying Zhang, Riquan Zhang, Jiajia Zhang, Feature Screening for Nonparametric and Semiparametric Models with Ultrahigh-Dimensional Covariates, Journal of Systems Science and Complexity, 10.1007/s11424-017-6310-6, 31, 5, (1350-1361), (2017).
- Rodrigue Ngueyep, Nicoleta Serban, High-dimensional multivariate additive regression for uncovering contributing factors to healthcare expenditure, Biostatistics, 10.1093/biostatistics/kxx043, 19, 3, (359-373), (2017).
- Hemant Tyagi, Anastasios Kyrillidis, Bernd Gärtner, Andreas Krause, Algorithms for learning sparse additive models with interactions in high dimensions*, Information and Inference: A Journal of the IMA, 10.1093/imaiai/iax008, 7, 2, (183-249), (2017).
- Zhao Chen, Jianqing Fan, Runze Li, Error Variance Estimation in Ultrahigh-Dimensional Additive Models, Journal of the American Statistical Association, 10.1080/01621459.2016.1251440, 113, 521, (315-327), (2017).
- Garret Vo, Debdeep Pati, Sparse Additive Gaussian Process with Soft Interactions, Open Journal of Statistics, 10.4236/ojs.2017.74039, 07, 04, (567-588), (2017).
- Qiuyi Han, Jie Ding, Edoardo M. Airoldi, Vahid Tarokh, SLANTS: Sequential Adaptive Nonlinear Modeling of Time Series, IEEE Transactions on Signal Processing, 10.1109/TSP.2017.2716898, 65, 19, (4994-5005), (2017).
- Mojtaba Kadkhodaie Elyaderani, Swayambhoo Jain, Jeffrey Druce, Stefano Gonella, Jarvis Haupt, undefined, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 10.1109/ICASSP.2017.7952981, (4366-4370), (2017).
- Tingyang Xu, Tan Yan, Dongjin Song, Wei Cheng, Haifeng Chen, Geoff Jiang, Jinbo Bi, undefined, 2017 IEEE International Conference on Big Data (Big Data), 10.1109/BigData.2017.8258067, (1357-1362), (2017).
- Adrian Barbu, Yiyuan She, Liangjing Ding, Gary Gramajo, Feature Selection with Annealing for Computer Vision and Big Data Learning, IEEE Transactions on Pattern Analysis and Machine Intelligence, 10.1109/TPAMI.2016.2544315, 39, 2, (272-286), (2017).
- Filipe Rodrigues, Stanislav S. Borysov, Bernardete Ribeiro, Francisco C. Pereira, A Bayesian Additive Model for Understanding Public Transport Usage in Special Events, IEEE Transactions on Pattern Analysis and Machine Intelligence, 10.1109/TPAMI.2016.2635136, 39, 11, (2113-2126), (2017).
- Marc Goessling, LogitBoost autoregressive networks, Computational Statistics & Data Analysis, 10.1016/j.csda.2017.03.010, 112, (88-98), (2017).
- Kateřina Hlaváčková-Schindler, Valeriya Naumova, Sergiy Pereverzyev, Multi-Penalty Regularization for Detecting Relevant Variables, Recent Applications of Harmonic Analysis to Function Spaces, Differential Equations, and Data Science, 10.1007/978-3-319-55556-0_15, (889-916), (2017).
- Kosuke Yoshida, Junichiro Yoshimoto, Kenji Doya, Sparse kernel canonical correlation analysis for discovery of nonlinear interactions in high-dimensional data, BMC Bioinformatics, 10.1186/s12859-017-1543-x, 18, 1, (2017).
- Kyle R. White, Leonard A. Stefanski, Yichao Wu, Variable Selection in Kernel Regression Using Measurement Error Selection Likelihoods, Journal of the American Statistical Association, 10.1080/01621459.2016.1222287, 112, 520, (1587-1597), (2017).
- Shizhe Chen, Ali Shojaie, Daniela M. Witten, Network Reconstruction From High-Dimensional Ordinary Differential Equations, Journal of the American Statistical Association, 10.1080/01621459.2016.1229197, 112, 520, (1697-1707), (2017).
- Takuma Yoshida, Two stage smoothing in additive models with missing covariates, Statistical Papers, 10.1007/s00362-017-0896-6, (2017).
- Siddhartha Nandy, Chae Young Lim, Tapabrata Maiti, Additive model building for spatial regression, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 10.1111/rssb.12195, 79, 3, (779-800), (2016).
- Shaogao Lv, Xin He, Junhui Wang, A unified penalized method for sparse additive quantile models: an RKHS approach, Annals of the Institute of Statistical Mathematics, 10.1007/s10463-016-0566-9, 69, 4, (897-923), (2016).
- Mengdi Wang, Ethan X. Fang, Han Liu, Stochastic compositional gradient descent: algorithms for minimizing compositions of expected-value functions, Mathematical Programming, 10.1007/s10107-016-1017-3, 161, 1-2, (419-449), (2016).
- Kuang‐Yao Lee, Bing Li, Hongyu Zhao, Variable selection via additive conditional independence, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 10.1111/rssb.12150, 78, 5, (1037-1055), (2016).
- Marius Kwemou, Non-asymptotic oracle inequalities for the Lasso and Group Lasso in high dimensional logistic model, ESAIM: Probability and Statistics, 10.1051/ps/2015020, 20, (309-331), (2016).
- Anestis Antoniadis, Xavier Brossat, Yannig Goude, Jean-Michel Poggi, Vincent Thouvenot, Automatic Component Selection in Additive Modeling of French National Electricity Load Forecasting, Nonparametric Statistics, 10.1007/978-3-319-41582-6_14, (191-209), (2016).
- Tso-Jung Yen, Yu-Min Yen, Structured variable selection via prior-induced hierarchical penalty functions, Computational Statistics & Data Analysis, 10.1016/j.csda.2015.10.011, 96, (87-103), (2016).
- Vincent Thouvenot, Audrey Pichavant, Yannig Goude, Anestis Antoniadis, Jean-Michel Poggi, Electricity Forecasting Using Multi-Stage Estimators of Nonlinear Additive Models, IEEE Transactions on Power Systems, 10.1109/TPWRS.2015.2504921, 31, 5, (3665-3673), (2016).
- Alhussein Fawzi, Jean-Baptiste Fiot, Bei Chen, Mathieu Sinn, Pascal Frossard, Structured Dimensionality Reduction for Additive Model Regression, IEEE Transactions on Knowledge and Data Engineering, 10.1109/TKDE.2016.2525996, 28, 6, (1589-1601), (2016).
- Umberto Amato, Anestis Antoniadis, Italia De Feis, Additive model selection, Statistical Methods & Applications, 10.1007/s10260-016-0357-8, 25, 4, (519-564), (2016).
- Francesco Giordano, Maria Lucia Parrella, Bias-corrected inference for multivariate nonparametric regression: Model selection and oracle property, Journal of Multivariate Analysis, 10.1016/j.jmva.2015.08.016, 143, (71-93), (2016).
- Zaili Fang, Inyoung Kim, Patrick Schaumont, Flexible variable selection for recovering sparsity in nonadditive nonparametric models, Biometrics, 10.1111/biom.12518, 72, 4, (1155-1163), (2016).
- Chaohui Guo, Hu Yang, Jing Lv, Generalized varying index coefficient models, Journal of Computational and Applied Mathematics, 10.1016/j.cam.2015.11.025, 300, (1-17), (2016).
- Haiqiang Ma, Zhongyi Zhu, Continuously dynamic additive models for functional data, Journal of Multivariate Analysis, 10.1016/j.jmva.2016.05.003, 150, (1-13), (2016).
- Ashley Petersen, Daniela Witten, Noah Simon, Fused Lasso Additive Model, Journal of Computational and Graphical Statistics, 10.1080/10618600.2015.1073155, 25, 4, (1005-1025), (2016).
- Yin Lou, Jacob Bien, Rich Caruana, Johannes Gehrke, Sparse Partially Linear Additive Models, Journal of Computational and Graphical Statistics, 10.1080/10618600.2015.1089775, 25, 4, (1126-1140), (2016).
- Yuao Hu, Kaifeng Zhao, Heng Lian, Bayesian Additive Machine: classification with a semiparametric discriminant function, Journal of Statistical Computation and Simulation, 10.1080/00949655.2015.1028937, 86, 4, (682-695), (2015).
- Tao Lu, Robust variable selection method for nonparametric differential equation models with application to nonlinear dynamic gene regulatory network analysis, Journal of Biopharmaceutical Statistics, 10.1080/10543406.2015.1052496, 26, 4, (712-724), (2015).
- JingYuan Liu, Wei Zhong, RunZe Li, A selective overview of feature screening for ultrahigh-dimensional data, Science China Mathematics, 10.1007/s11425-015-5062-9, 58, 10, (1-22), (2015).
- Mojtaba Kadkhodaie, Swayambhoo Jain, Jarvis Haupt, Jeff Druce, Stefano Gonella, undefined, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 10.1109/CAMSAP.2015.7383814, (373-376), (2015).
- See more




