Reduced rank stochastic regression with a sparse singular value decomposition
Abstract
Summary. For a reduced rank multivariate stochastic regression model of rank r*, the regression coefficient matrix can be expressed as a sum of r* unit rank matrices each of which is proportional to the outer product of the left and right singular vectors. For improving predictive accuracy and facilitating interpretation, it is often desirable that these left and right singular vectors be sparse or enjoy some smoothness property. We propose a regularized reduced rank regression approach for solving this problem. Computation algorithms and regularization parameter selection methods are developed, and the properties of the new method are explored both theoretically and by simulation. In particular, the regularization method proposed is shown to be selection consistent and asymptotically normal and to enjoy the oracle property. We apply the proposed model to perform biclustering analysis with microarray gene expression data.
Citing Literature
Number of times cited according to CrossRef: 39
- Haileab Hilafu, Sandra E. Safo, Lillian Haine, Sparse reduced-rank regression for integrating omics data, BMC Bioinformatics, 10.1186/s12859-020-03606-2, 21, 1, (2020).
- Dunfu Yang, Gyuhyeong Goh, Haiyan Wang, A fully Bayesian approach to sparse reduced-rank multivariate regression, Statistical Modelling, 10.1177/1471082X20948697, (1471082X2094869), (2020).
- Yoshimasa Uematsu, Yingying Fan, Kun Chen, Jinchi Lv, Wei Lin, SOFAR: Large-Scale Association Network Learning, IEEE Transactions on Information Theory, 10.1109/TIT.2019.2909889, 65, 8, (4924-4939), (2019).
- Gen Li, Xiaokang Liu, Kun Chen, Integrative multi‐view regression: Bridging group‐sparse and low‐rank models, Biometrics, 10.1111/biom.13006, 75, 2, (593-602), (2019).
- Ruowang Li, Rui Duan, Rachel L Kember, Daniel J Rader, Scott M Damrauer, Jason H Moore, Yong Chen, A regression framework to uncover pleiotropy in large-scale electronic health record data, Journal of the American Medical Informatics Association, 10.1093/jamia/ocz084, (2019).
- Weihua Zhao, Fode Zhang, Rui Li, Heng Lian, Principal single-index varying-coefficient models for dimension reduction in quantile regression, Journal of Statistical Computation and Simulation, 10.1080/00949655.2019.1707831, (1-19), (2019).
- Yiyuan She, Hoang Tran, On cross‐validation for sparse reduced rank regression, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 10.1111/rssb.12295, 81, 1, (145-161), (2018).
- Chongliang Luo, Jian Liang, Gen Li, Fei Wang, Changshui Zhang, Dipak K. Dey, Kun Chen, Leveraging mixed and incomplete outcomes via reduced-rank modeling, Journal of Multivariate Analysis, 10.1016/j.jmva.2018.04.011, 167, (378-394), (2018).
- Weihua Zhao, Xuejun Jiang, Heng Lian, A principal varying-coefficient model for quantile regression: Joint variable selection and dimension reduction, Computational Statistics & Data Analysis, 10.1016/j.csda.2018.05.021, 127, (269-280), (2018).
- Jian Liang, Kun Chen, Ming Lin, Changshui Zhang, Fei Wang, Robust finite mixture regression for heterogeneous targets, Data Mining and Knowledge Discovery, 10.1007/s10618-018-0564-z, 32, 6, (1509-1560), (2018).
- Kejun He, Heng Lian, Shujie Ma, Jianhua Z. Huang, Dimensionality Reduction and Variable Selection in Multivariate Varying-Coefficient Models With a Large Number of Covariates, Journal of the American Statistical Association, 10.1080/01621459.2017.1285774, 113, 522, (746-754), (2018).
- Gyuhyeong Goh, Dipak K. Dey, Kun Chen, Bayesian sparse reduced rank multivariate regression, Journal of Multivariate Analysis, 10.1016/j.jmva.2017.02.007, 157, (14-28), (2017).
- Jinyu Chen, Shihua Zhang, Integrative cancer genomics: models, algorithms and analysis, Frontiers of Computer Science, 10.1007/s11704-016-5568-5, 11, 3, (392-406), (2017).
- Ruiyan Luo, Xin Qi, Signal extraction approach for sparse multivariate response regression, Journal of Multivariate Analysis, 10.1016/j.jmva.2016.09.005, 153, (83-97), (2017).
- Xin Xin, Jianhua Hu, Liangyuan Liu, On the oracle property of a generalized adaptive elastic-net for multivariate linear regression with a diverging number of parameters, Journal of Multivariate Analysis, 10.1016/j.jmva.2017.08.005, 162, (16-31), (2017).
- Aditya Mishra, Dipak K. Dey, Kun Chen, Sequential Co-Sparse Factor Regression, Journal of Computational and Graphical Statistics, 10.1080/10618600.2017.1340891, 26, 4, (814-825), (2017).
- Yiyuan She, Selective factor extraction in high dimensions, Biometrika, 10.1093/biomet/asw059, (asw059), (2017).
- Chongliang Luo, Dipak Dey, Kun Chen, Partially Supervised Sparse Factor Regression For Multi-Class Classification, Statistical Applications from Clinical Trials and Personalized Medicine to Finance and Business Analytics, 10.1007/978-3-319-42568-9_24, (323-335), (2016).
- Jingjie Yan, Wenming Zheng, Qinyu Xu, Guanming Lu, Haibo Li, Bei Wang, Sparse Kernel Reduced-Rank Regression for Bimodal Emotion Recognition From Facial Expression and Speech, IEEE Transactions on Multimedia, 10.1109/TMM.2016.2557721, 18, 7, (1319-1329), (2016).
- Jinyu Chen, Shihua Zhang, Integrative analysis for identifying joint modular patterns of gene-expression and drug-response data, Bioinformatics, 10.1093/bioinformatics/btw059, 32, 11, (1724-1732), (2016).
- Sanying Feng, Heng Lian, Fukang Zhu, Reduced rank regression with possibly non-smooth criterion functions: An empirical likelihood approach, Computational Statistics & Data Analysis, 10.1016/j.csda.2016.04.012, 103, (139-150), (2016).
- Heng Lian, Yongdai Kim, Nonconvex penalized reduced rank regression and its oracle properties in high dimensions, Journal of Multivariate Analysis, 10.1016/j.jmva.2015.09.023, 143, (383-393), (2016).
- Kun Chen, Kung-Sik Chan, A note on rank reduction in sparse multivariate regression, Journal of Statistical Theory and Practice, 10.1080/15598608.2015.1081573, 10, 1, (100-120), (2015).
- Heng Lian, Sanying Feng, Kaifeng Zhao, Parametric and semiparametric reduced-rank regression with flexible sparsity, Journal of Multivariate Analysis, 10.1016/j.jmva.2015.01.013, 136, (163-174), (2015).
- Wei Lin, Rui Feng, Hongzhe Li, Regularization Methods for High-Dimensional Instrumental Variables Regression With an Application to Genetical Genomics, Journal of the American Statistical Association, 10.1080/01621459.2014.908125, 110, 509, (270-288), (2015).
- A. Mukherjee, K. Chen, N. Wang, J. Zhu, On the degrees of freedom of reduced-rank estimators in multivariate regression, Biometrika, 10.1093/biomet/asu067, 102, 2, (457-477), (2015).
- R. Dennis Cook, Liliana Forzani, Xin Zhang, Envelopes and reduced-rank regression, Biometrika, 10.1093/biomet/asv001, 102, 2, (439-456), (2015).
- Lisha Chen, Jianhua Z. Huang, Sparse reduced-rank regression with covariance estimation, Statistics and Computing, 10.1007/s11222-014-9517-6, 26, 1-2, (461-470), (2014).
- Limin Li, Zhongsheng Wang, Hongkai Jiang, Storage battery remaining useful life prognosis using improved unscented particle filter, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 10.1177/1748006X14550662, 229, 1, (52-61), (2014).
- Kun Chen, Kung-Sik Chan, Nils Chr. Stenseth, Source-Sink Reconstruction Through Regularized Multicomponent Regression Analysis—With Application to Assessing Whether North Sea Cod Larvae Contributed to Local Fjord Cod in Skagerrak, Journal of the American Statistical Association, 10.1080/01621459.2014.898583, 109, 506, (560-573), (2014).
- X. Ma, L. Xiao, W. H. Wong, Learning regulatory programs by threshold SVD regression, Proceedings of the National Academy of Sciences, 10.1073/pnas.1417808111, 111, 44, (15675-15680), (2014).
- Zi Wang, Edward Curry, Giovanni Montana, Network-guided regression for detecting associations between DNA methylation and gene expression, Bioinformatics, 10.1093/bioinformatics/btu361, 30, 19, (2693-2701), (2014).
- Jianhua Hu, Xin Xin, Jinhong You, Model determination and estimation for the growth curve model via group SCAD penalty, Journal of Multivariate Analysis, 10.1016/j.jmva.2013.11.001, 124, (199-213), (2014).
- Hongtu Zhu, Zakaria Khondker, Zhaohua Lu, Joseph G. Ibrahim, Bayesian Generalized Low Rank Regression Models for Neuroimaging Phenotypes and Genetic Markers, Journal of the American Statistical Association, 10.1080/01621459.2014.923775, 109, 507, (977-990), (2014).
- Kun Chen, Lorenzo Ciannelli, Mary Beth Decker, Carol Ladd, Wei Cheng, Ziqian Zhou, Kung-Sik Chan, Reconstructing Source-Sink Dynamics in a Population with a Pelagic Dispersal Phase, PLoS ONE, 10.1371/journal.pone.0095316, 9, 5, (e95316), (2014).
- K. Chen, H. Dong, K.-S. Chan, Reduced rank regression via adaptive nuclear norm penalization, Biometrika, 10.1093/biomet/ast036, 100, 4, (901-920), (2013).
- Omid Ghasemi, Nguyen Nguyen, Trevi A Ramirez, Jianhua Zhang, Merry L Lindsey, Yu-Fang Jin, undefined, 2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops, 10.1109/BIBMW.2012.6470296, (143-150), (2012).
- Matt Silver, Eva Janousova, Xue Hua, Paul M. Thompson, Giovanni Montana, Identification of gene pathways implicated in Alzheimer's disease using longitudinal imaging phenotypes with sparse regression, NeuroImage, 10.1016/j.neuroimage.2012.08.002, 63, 3, (1681-1694), (2012).
- Jin Liu, Jian Huang, Shuangge Ma, Analysis of Genome-Wide Association Studies with Multiple Outcomes Using Penalization, PLoS ONE, 10.1371/journal.pone.0051198, 7, 12, (e51198), (2012).




