Dimension reduction and alleviation of confounding for spatial generalized linear mixed models
Abstract
Summary. Non‐Gaussian spatial data are very common in many disciplines. For instance, count data are common in disease mapping, and binary data are common in ecology. When fitting spatial regressions for such data, one needs to account for dependence to ensure reliable inference for the regression coefficients. The spatial generalized linear mixed model offers a very popular and flexible approach to modelling such data, but this model suffers from two major shortcomings: variance inflation due to spatial confounding and high dimensional spatial random effects that make fully Bayesian inference for such models computationally challenging. We propose a new parameterization of the spatial generalized linear mixed model that alleviates spatial confounding and speeds computation by greatly reducing the dimension of the spatial random effects. We illustrate the application of our approach to simulated binary, count and Gaussian spatial data sets, and to a large infant mortality data set.
Citing Literature
Number of times cited according to CrossRef: 111
- Susan P Elias, Allison M Gardner, Kirk A Maasch, Sean D Birkel, Norman T Anderson, Peter W Rand, Charles B Lubelczyk, Robert P Smith, A Generalized Additive Model Correlating Blacklegged Ticks With White-Tailed Deer Density, Temperature, and Humidity in Maine, USA, 1990–2013, Journal of Medical Entomology, 10.1093/jme/tjaa180, (2020).
- Douglas R. M. Azevedo, Dipankar Bandyopadhyay, Marcos O. Prates, Abdel‐Salam G. Abdel‐Salam, Dina Garcia, Assessing spatial confounding in cancer disease mapping using R, CANCER REPORTS, 10.1002/cnr2.1263, 3, 4, (2020).
- Job Taiwo Gbadegesin, Samson Ojekalu, Taiwo Frances Gbadegesin, Markson Opeyemi Komolafe, Sustaining community infrastructure through community-based governance (the social practice of collective design policy), Smart and Sustainable Built Environment, 10.1108/SASBE-10-2019-0142, ahead-of-print, ahead-of-print, (2020).
- Joshua P. Keller, Adam A. Szpiro, Selecting a scale for spatial confounding adjustment, Journal of the Royal Statistical Society: Series A (Statistics in Society), 10.1111/rssa.12556, 183, 3, (1121-1143), (2020).
- Shin‐ichi Iida, Tetsushi Murakami, Yu Kurosawa, Yoshiyuki Suzuri, Gregory L. Fisher, Takuya Miyayama, Time‐of‐flight secondary ion tandem mass spectrometry depth profiling of organic light‐emitting diode devices for elucidating the degradation process, Rapid Communications in Mass Spectrometry, 10.1002/rcm.8640, 34, 7, (2020).
- Na Liu, Xige Wang, Hongqiang Liu, Changpo Zhang, Identification of the metabolites of erianin in rat and human by liquid chromatography/electrospray ionization tandem mass spectrometry, Rapid Communications in Mass Spectrometry, 10.1002/rcm.8661, 34, 7, (2020).
- He Li, Yun Bo Li, Jia Lin Shen, Tie Jun Cui, Low‐Profile Electromagnetic Holography by Using Coding Fabry–Perot Type Metasurface with In‐Plane Feeding, Advanced Optical Materials, 10.1002/adom.201902057, 8, 9, (2020).
- Jian‐Feng Qu, Yang‐Kun Chen, Gen‐Pei Luo, Dong‐Hai Qiu, Yong‐Lin Liu, Huo‐Hua Zhong, Zhi‐Qiang Wu, Does the Babinski sign predict functional outcome in acute ischemic stroke?, Brain and Behavior, 10.1002/brb3.1575, 10, 4, (2020).
- João B. M. Pereira, Widemberg S. Nobre, Igor F. L. Silva, Alexandra M. Schmidt, Spatial confounding in hurdle multilevel beta models: the case of the Brazilian Mathematical Olympics for Public Schools, Journal of the Royal Statistical Society: Series A (Statistics in Society), 10.1111/rssa.12551, 183, 3, (1051-1073), (2020).
- Won Chang, Sunghoon Kim, Heewon Chae, A regularized spatial market segmentation method with Dirichlet process—Gaussian mixture prior, Spatial Statistics, 10.1016/j.spasta.2019.100402, 35, (100402), (2020).
- Daniel Zilber, Matthias Katzfuss, Vecchia-Laplace approximations of generalized Gaussian processes for big non-Gaussian spatial data, Computational Statistics & Data Analysis, 10.1016/j.csda.2020.107081, (107081), (2020).
- Connor Donegan, Yongwan Chun, Amy E. Hughes, Bayesian estimation of spatial filters with Moran’s eigenvectors and hierarchical shrinkage priors, Spatial Statistics, 10.1016/j.spasta.2020.100450, (100450), (2020).
- Mohamed Elkhouly, Marco A.R. Ferreira, Dynamic multiscale spatiotemporal models for multivariate Gaussian data, Spatial Statistics, 10.1016/j.spasta.2020.100475, (100475), (2020).
- Staci A. Hepler, Robert J. Erhardt, A spatiotemporal model for multivariate occupancy data, Environmetrics, 10.1002/env.2657, 0, 0, (2020).
- Haitao YANG, Bing XIE, Guojing ZHAO, Yinan GONG, Pu MOU, Jianping GE, Limin FENG, Elusive cats in our backyards: persistence of the North Chinese leopard (Panthera pardus japonensis) in a human‐dominated landscape in central China, Integrative Zoology, 10.1111/1749-4877.12482, 0, 0, (2020).
- Kori Khan, Catherine A. Calder, Restricted Spatial Regression Methods: Implications for Inference, Journal of the American Statistical Association, 10.1080/01621459.2020.1788949, (1-13), (2020).
- Karim Anaya‐Izquierdo, Neal Alexander, Spatial regression and spillover effects in cluster randomized trials with count outcomes, Biometrics, 10.1111/biom.13316, 0, 0, (2020).
- Guilherme Ludwig, Jun Zhu, Perla Reyes, Chun-Shu Chen, Shawn P. Conley, On spline-based approaches to spatial linear regression for geostatistical data, Environmental and Ecological Statistics, 10.1007/s10651-020-00441-9, (2020).
- Claire Kelling, Corina Graif, Gizem Korkmaz, Murali Haran, Modeling the Social and Spatial Proximity of Crime: Domestic and Sexual Violence Across Neighborhoods, Journal of Quantitative Criminology, 10.1007/s10940-020-09454-w, (2020).
- Rao Hamza Ali, Josh Graves, Stanley Wu, Jenny Lee, Erik Linstead, A Machine Learning Approach to Delineating Neighborhoods from Geocoded Appraisal Data, ISPRS International Journal of Geo-Information, 10.3390/ijgi9070451, 9, 7, (451), (2020).
- Kathryn S. Williams, Ross T. Pitman, Gareth K. H. Mann, Gareth Whittington-Jones, Jessica Comley, Samual T. Williams, Russell A. Hill, Guy A. Balme, Daniel M. Parker, Utilizing bycatch camera-trap data for broad-scale occupancy and conservation: a case study of the brown hyaena Parahyaena brunnea , Oryx, 10.1017/S0030605319000747, (1-11), (2020).
- Jaewoo Park, Murali Haran, Reduced-Dimensional Monte Carlo Maximum Likelihood for Latent Gaussian Random Field Models, Journal of Computational and Graphical Statistics, 10.1080/10618600.2020.1811106, (1-15), (2020).
- Zhiyong Li, Xinyi Hu, Ke Li, Fanyin Zhou, Feng Shen, Inferring the outcomes of rejected loans: an application of semisupervised clustering, Journal of the Royal Statistical Society: Series A (Statistics in Society), 10.1111/rssa.12534, 183, 2, (631-654), (2019).
- Man Jin, Shunan Zhao, Subal C. Kumbhakar, Information asymmetry and leverage adjustments: a semiparametric varying‐coefficient approach, Journal of the Royal Statistical Society: Series A (Statistics in Society), 10.1111/rssa.12524, 183, 2, (581-605), (2019).
- Sarah E. Heaps, Malcolm Farrow, Kevin J. Wilson, Identifying the effect of public holidays on daily demand for gas, Journal of the Royal Statistical Society: Series A (Statistics in Society), 10.1111/rssa.12504, 183, 2, (471-492), (2019).
- Junho Lee, Ying Sun, Howard H. Chang, Spatial cluster detection of regression coefficients in a mixed‐effects model, Environmetrics, 10.1002/env.2578, 31, 2, (2019).
- Candace Berrett, William F. Christensen, Stephan R. Sain, Nathan Sandholtz, David W. Coats, Claudia Tebaldi, Hedibert F. Lopes, Modeling sea‐level processes on the U.S. Atlantic Coast, Environmetrics, 10.1002/env.2609, 31, 4, (2019).
- K. Shuvo Bakar, Nicholas Biddle, Philip Kokic, Huidong Jin, A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys, Journal of the Royal Statistical Society: Series A (Statistics in Society), 10.1111/rssa.12526, 183, 2, (535-563), (2019).
- Yei Eun Shin, Huiyan Sang, Dawei Liu, Toby A. Ferguson, Peter X. K. Song, Autologistic network model on binary data for disease progression study, Biometrics, 10.1111/biom.13111, 75, 4, (1310-1320), (2019).
- Haigang Liu, David B. Hitchcock, S. Zahra Samadi, Spatial and Spatio-Temporal Analysis of Precipitation Data from South Carolina, Modern Statistical Methods for Spatial and Multivariate Data, 10.1007/978-3-030-11431-2_2, (31-50), (2019).
- Donald Musgrove, Derek S. Young, John Hughes, Lynn E. Eberly, A Sparse Areal Mixed Model for Multivariate Outcomes, with an Application to Zero-Inflated Census Data, Modern Statistical Methods for Spatial and Multivariate Data, 10.1007/978-3-030-11431-2_3, (51-74), (2019).
- Heli Gao, Jonathan R. Bradley, Bayesian analysis of areal data with unknown adjacencies using the stochastic edge mixed effects model, Spatial Statistics, 10.1016/j.spasta.2019.100357, (100357), (2019).
- Jakub Witold Bubnicki, Marcin Churski, Krzysztof Schmidt, Tom A Diserens, Dries PJ Kuijper, Linking spatial patterns of terrestrial herbivore community structure to trophic interactions, eLife, 10.7554/eLife.44937, 8, (2019).
- Madison Arnsbarger, Joshua Goldstein, Claire Kelling, Gizem Korkmaz, Sallie Keller, Modeling Response Time to Structure Fires, The American Statistician, 10.1080/00031305.2019.1695664, (1-9), (2019).
- Daisuke Murakami, Daniel A. Griffith, A memory-free spatial additive mixed modeling for big spatial data, Japanese Journal of Statistics and Data Science, 10.1007/s42081-019-00063-x, (2019).
- Thomas Kneib, Nadja Klein, Stefan Lang, Nikolaus Umlauf, Modular regression - a Lego system for building structured additive distributional regression models with tensor product interactions, TEST, 10.1007/s11749-019-00631-z, (2019).
- Gavin Q. Collins, Matthew J. Heaton, Leiqiu Hu, Physically constrained spatiotemporal modeling: generating clear-sky constructions of land surface temperature from sparse, remotely sensed satellite data, Journal of Applied Statistics, 10.1080/02664763.2019.1681384, (1-21), (2019).
- Daniel A. Griffith, Negative Spatial Autocorrelation: One of the Most Neglected Concepts in Spatial Statistics, Stats, 10.3390/stats2030027, 2, 3, (388-415), (2019).
- Michael F. Christensen, Matthew J. Heaton, Summer Rupper, C. Shane Reese, William F. Christensen, Bayesian Multi-Scale Spatio-Temporal Modeling of Precipitation in the Indus Watershed, Frontiers in Earth Science, 10.3389/feart.2019.00210, 7, (2019).
- Yung-Huei Chiou, Hong-Ding Yang, Chun-Shu Chen, An adjusted parameter estimation for spatial regression with spatial confounding, Stochastic Environmental Research and Risk Assessment, 10.1007/s00477-019-01716-9, (2019).
- Hiroshi Mamiya, Alexandra M Schmidt, Erica E M Moodie, Yu Ma, David L Buckeridge, An Area-Level Indicator of Latent Soda Demand: Spatial Statistical Modeling of Grocery Store Transaction Data to Characterize the Nutritional Landscape in Montreal, Canada, American Journal of Epidemiology, 10.1093/aje/kwz115, (2019).
- Matthew J. Heaton, Candace Berrett, Sierra Pugh, Amber Evans, Chantel Sloan, Modeling Bronchiolitis Incidence Proportions in the Presence of Spatio-Temporal Uncertainty, Journal of the American Statistical Association, 10.1080/01621459.2019.1609480, (1-29), (2019).
- Sigrunn H. S⊘rbye, Janine B. Illian, Daniel P. Simpson, David Burslem, Håvard Rue, Careful prior specification avoids incautious inference for log‐Gaussian Cox point processes, Journal of the Royal Statistical Society: Series C (Applied Statistics), 10.1111/rssc.12321, 68, 3, (543-564), (2018).
- Cici Bauer, Jon Wakefield, Stratified space–time infectious disease modelling, with an application to hand, foot and mouth disease in China, Journal of the Royal Statistical Society: Series C (Applied Statistics), 10.1111/rssc.12284, 67, 5, (1379-1398), (2018).
- Erin M. Schliep, Alan E. Gelfand, James S. Clark, Roland Kays, Joint Temporal Point Pattern Models for Proximate Species Occurrence in a Fixed Area Using Camera Trap Data, Journal of Agricultural, Biological and Environmental Statistics, 10.1007/s13253-018-0327-8, 23, 3, (334-357), (2018).
- Martin Bezener, Lynn E. Eberly, John Hughes, Galin Jones, Donald R. Musgrove, Bayesian Spatiotemporal Modeling for Detecting Neuronal Activation via Functional Magnetic Resonance Imaging, Handbook of Big Data Analytics, 10.1007/978-3-319-18284-1_19, (485-501), (2018).
- Tianming Wang, J. Andrew Royle, James L.D. Smith, Liang Zou, Xinyue Lü, Tong Li, Haitao Yang, Zhilin Li, Rongna Feng, Yajing Bian, Limin Feng, Jianping Ge, Living on the edge: Opportunities for Amur tiger recovery in China, Biological Conservation, 10.1016/j.biocon.2017.11.008, 217, (269-279), (2018).
- Philipp Otto, Wolfgang Schmid, Robert Garthoff, Generalised spatial and spatiotemporal autoregressive conditional heteroscedasticity, Spatial Statistics, 10.1016/j.spasta.2018.07.005, 26, (125-145), (2018).
- Yawen Guan, Murali Haran, A Computationally Efficient Projection-Based Approach for Spatial Generalized Linear Mixed Models, Journal of Computational and Graphical Statistics, 10.1080/10618600.2018.1425625, 27, 4, (701-714), (2018).
- Anton Beloconi, Nektarios Chrysoulakis, Alexei Lyapustin, Jürg Utzinger, Penelope Vounatsou, Bayesian geostatistical modelling of PM10 and PM2.5 surface level concentrations in Europe using high-resolution satellite-derived products, Environment International, 10.1016/j.envint.2018.08.041, 121, (57-70), (2018).
- Daniel A. Griffith, Yongwan Chun, GIS and Spatial Statistics/Econometrics: An Overview, Comprehensive Geographic Information Systems, 10.1016/B978-0-12-409548-9.09680-9, (1-26), (2018).
- Hauke Thaden, Thomas Kneib, Structural Equation Models for Dealing With Spatial Confounding, The American Statistician, 10.1080/00031305.2017.1305290, 72, 3, (239-252), (2018).
- Bibliography, Occupancy Estimation and Modeling, 10.1016/B978-0-12-407197-1.00030-2, (597-630), (2018).
- Genevieve S. Silva, Joshua L. Warren, Nicole C. Deziel, Spatial Modeling to Identify Sociodemographic Predictors of Hydraulic Fracturing Wastewater Injection Wells in Ohio Census Block Groups, Environmental Health Perspectives, 10.1289/EHP2663, 126, 6, (067008), (2018).
- Darryl I. MacKenzie, James D. Nichols, J. Andrew Royle, Kenneth H. Pollock, Larissa L. Bailey, James E. Hines, Extensions to Basic Approaches, Occupancy Estimation and Modeling, 10.1016/B978-0-12-407197-1.00008-9, (243-311), (2018).
- Mark D. Risser, Christopher J. Paciorek, Dáithí A. Stone, Spatially Dependent Multiple Testing Under Model Misspecification, With Application to Detection of Anthropogenic Influence on Extreme Climate Events, Journal of the American Statistical Association, 10.1080/01621459.2018.1451335, (0-0), (2018).
- K. Shuvo Bakar, Huidong Jin, Areal prediction of survey data using Bayesian spatial generalised linear models, Communications in Statistics - Simulation and Computation, 10.1080/03610918.2018.1530787, (1-16), (2018).
- Erin M. Schliep, Comments on: Process modeling for slope and aspect with application to elevation data maps, TEST, 10.1007/s11749-018-0620-4, (2018).
- Victor De Oliveira, Models for Geostatistical Binary Data: Properties and Connections, The American Statistician, 10.1080/00031305.2018.1444674, (1-8), (2018).
- Philip A. White, Candace Berrett, E. Shannon Neeley-Tass, Michael G. Findley, Modeling Efficiency of Foreign Aid Allocation in Malawi, The American Statistician, 10.1080/00031305.2018.1470032, (1-15), (2018).
- Harrison Quick, Lance A. Waller, Michele Casper, A multivariate space–time model for analysing county level heart disease death rates by race and sex, Journal of the Royal Statistical Society: Series C (Applied Statistics), 10.1111/rssc.12215, 67, 1, (291-304), (2017).
- Nathan Torbick, Beth Ziniti, Elijah Stommel, Ernst Linder, Angeline Andrew, Tracie Caller, Jim Haney, Walter Bradley, Patricia L. Henegan, Xun Shi, Assessing Cyanobacterial Harmful Algal Blooms as Risk Factors for Amyotrophic Lateral Sclerosis, Neurotoxicity Research, 10.1007/s12640-017-9740-y, 33, 1, (199-212), (2017).
- Paul B. Conn, James T. Thorson, Devin S. Johnson, Confronting preferential sampling when analysing population distributions: diagnosis and model‐based triage, Methods in Ecology and Evolution, 10.1111/2041-210X.12803, 8, 11, (1535-1546), (2017).
- Konstantinos Tzirakis, Yiannis Kamarianakis, Eleni Metaxa, Nikolaos Kontopodis, Christos V. Ioannou, Yannis Papaharilaou, A robust approach for exploring hemodynamics and thrombus growth associations in abdominal aortic aneurysms, Medical & Biological Engineering & Computing, 10.1007/s11517-016-1610-x, 55, 8, (1493-1506), (2017).
- Cedric Kai Wei Tan, Daniel G. Rocha, Gopalasamy Reuben Clements, Esteban Brenes-Mora, Laurie Hedges, Kae Kawanishi, Shariff Wan Mohamad, D. Mark Rayan, Gilmoore Bolongon, Jonathan Moore, Jamie Wadey, Ahimsa Campos-Arceiz, David W. Macdonald, Habitat use and predicted range for the mainland clouded leopard Neofelis nebulosa in Peninsular Malaysia, Biological Conservation, 10.1016/j.biocon.2016.12.012, 206, (65-74), (2017).
- Kuo-Jung Lee, Shulan Hsieh, Tanya Wen, Spatial Bayesian hierarchical model with variable selection to fMRI data, Spatial Statistics, 10.1016/j.spasta.2017.06.002, 21, (96-113), (2017).
- Daniel A. Griffith, Some robustness assessments of Moran eigenvector spatial filtering, Spatial Statistics, 10.1016/j.spasta.2017.09.001, 22, (155-179), (2017).
- Andrew Lawson, Duncan Lee, Bayesian Disease Mapping for Public Health, Disease Modelling and Public Health, Part A, 10.1016/bs.host.2017.05.001, (443-481), (2017).
- Matthew C. Lewis, M. Justin O’Riain, Foraging Profile, Activity Budget and Spatial Ecology of Exclusively Natural-Foraging Chacma Baboons (Papio ursinus) on the Cape Peninsula, South Africa, International Journal of Primatology, 10.1007/s10764-017-9978-5, 38, 4, (751-779), (2017).
- Trevor J. Hefley, Mevin B. Hooten, Ephraim M. Hanks, Robin E. Russell, Daniel P. Walsh, Dynamic spatio-temporal models for spatial data, Spatial Statistics, 10.1016/j.spasta.2017.02.005, 20, (206-220), (2017).
- Carmen de Keijzer, David Agis, Albert Ambrós, Gustavo Arévalo, Jose M Baldasano, Stefano Bande, Jose Barrera-Gómez, Joan Benach, Marta Cirach, Payam Dadvand, Stefania Ghigo, Èrica Martinez-Solanas, Mark Nieuwenhuijsen, Ennio Cadum, Xavier Basagaña, The association of air pollution and greenness with mortality and life expectancy in Spain: A small-area study, Environment International, 10.1016/j.envint.2016.11.009, 99, (170-176), (2017).
- Paul Harris, Chris Brunsdon, Binbin Lu, Tomoki Nakaya, Martin Charlton, Introducing bootstrap methods to investigate coefficient non-stationarity in spatial regression models, Spatial Statistics, 10.1016/j.spasta.2017.07.006, 21, (241-261), (2017).
- Mevin B. Hooten, Devin S. Johnson, Brett T. McClintock, Juan M. Morales, References, Animal Movement, 10.1201/9781315117744, (273-290), (2017).
- Trevor J. Hefley, Mevin B. Hooten, Ephraim M. Hanks, Robin E. Russell, Daniel P. Walsh, The Bayesian Group Lasso for Confounded Spatial Data, Journal of Agricultural, Biological and Environmental Statistics, 10.1007/s13253-016-0274-1, 22, 1, (42-59), (2017).
- Daisuke Murakami, Takahiro Yoshida, Hajime Seya, Daniel A. Griffith, Yoshiki Yamagata, A Moran coefficient-based mixed effects approach to investigate spatially varying relationships, Spatial Statistics, 10.1016/j.spasta.2016.12.001, 19, (68-89), (2017).
- Soumen Dey, Mohan Delampady, Ravishankar Parameshwaran, N. Samba Kumar, Arjun Srivathsa, K. Ullas Karanth, Bayesian Methods for Estimating Animal Abundance at Large Spatial Scales Using Data from Multiple Sources, Journal of Agricultural, Biological and Environmental Statistics, 10.1007/s13253-017-0276-7, 22, 2, (111-139), (2017).
- Brian B. Boutwell, Erik J. Nelson, Zhengmin Qian, Michael G. Vaughn, John P. Wright, Kevin M. Beaver, J. C. Barnes, Melissa Petkovsek, Roger Lewis, Mario Schootman, Richard Rosenfeld, Aggregate-level lead exposure, gun violence, homicide, and rape, PLOS ONE, 10.1371/journal.pone.0187953, 12, 11, (e0187953), (2017).
- Ephraim M. Hanks, Modeling Spatial Covariance Using the Limiting Distribution of Spatio-Temporal Random Walks, Journal of the American Statistical Association, 10.1080/01621459.2016.1224714, 112, 518, (497-507), (2016).
- Candace Berrett, Catherine A. Calder, Bayesian spatial binary classification, Spatial Statistics, 10.1016/j.spasta.2016.01.004, 16, (72-102), (2016).
- Silvia Bermedo-Carrasco, Cheryl Waldner, Juan Nicolás Peña-Sánchez, Michael Szafron, Spatial variations in cervical cancer prevention in Colombia: Geographical differences and associated socio-demographic factors, Spatial and Spatio-temporal Epidemiology, 10.1016/j.sste.2016.07.002, 19, (78-90), (2016).
- Francesca Bruno, Michela Cameletti, Maria Franco-Villoria, Fedele Greco, Rosaria Ignaccolo, Luigi Ippoliti, Pasquale Valentini, Massimo Ventrucci, A survey on ecological regression for health hazard associated with air pollution, Spatial Statistics, 10.1016/j.spasta.2016.05.003, 18, (276-299), (2016).
- Francesca Pannullo, Duncan Lee, Eugene Waclawski, Alastair H. Leyland, How robust are the estimated effects of air pollution on health? Accounting for model uncertainty using Bayesian model averaging, Spatial and Spatio-temporal Epidemiology, 10.1016/j.sste.2016.04.001, 18, (53-62), (2016).
- D.R. Musgrove, J. Hughes, L.E. Eberly, Hierarchical copula regression models for areal data, Spatial Statistics, 10.1016/j.spasta.2016.04.006, 17, (38-49), (2016).
- Yongwan Chun, Daniel A. Griffith, Monghyeon Lee, Parmanand Sinha, Eigenvector selection with stepwise regression techniques to construct eigenvector spatial filters, Journal of Geographical Systems, 10.1007/s10109-015-0225-3, 18, 1, (67-85), (2016).
- Jonathan R. Bradley, Christopher K. Wikle, Scott H. Holan, Bayesian Spatial Change of Support for Count-Valued Survey Data With Application to the American Community Survey, Journal of the American Statistical Association, 10.1080/01621459.2015.1117471, 111, 514, (472-487), (2016).
- Donald R. Musgrove, John Hughes, Lynn E. Eberly, Fast, fully Bayesian spatiotemporal inference for fMRI data, Biostatistics, 10.1093/biostatistics/kxv044, 17, 2, (291-303), (2016).
- Tyler A. Scott, Is Collaboration a Good Investment? Modeling the Link Between Funds Given to Collaborative Watershed Councils and Water Quality, Journal of Public Administration Research and Theory, 10.1093/jopart/muw033, 26, 4, (769-786), (2016).
- Juste Aristide Goungounga, Jean Gaudart, Marc Colonna, Roch Giorgi, Impact of socioeconomic inequalities on geographic disparities in cancer incidence: comparison of methods for spatial disease mapping, BMC Medical Research Methodology, 10.1186/s12874-016-0228-x, 16, 1, (2016).
- Jungsoon Choi, Andrew B Lawson, Bayesian spatially dependent variable selection for small area health modeling, Statistical Methods in Medical Research, 10.1177/0962280215627184, (096228021562718), (2016).
- R. Arunkumar, P. Karthigaikumar, Multi-retinal disease classification by reduced deep learning features, Neural Computing and Applications, 10.1007/s00521-015-2059-9, 28, 2, (329-334), (2015).
- P. Y. IROH TAM, J. S. MENK, J. HUGHES, S. L. KULASINGAM, An ecological analysis of pertussis disease in Minnesota, 2009–2013, Epidemiology and Infection, 10.1017/S0950268815002046, 144, 04, (847-855), (2015).
- Ian W. Renner, Jane Elith, Adrian Baddeley, William Fithian, Trevor Hastie, Steven J. Phillips, Gordana Popovic, David I. Warton, Point process models for presence‐only analysis, Methods in Ecology and Evolution, 10.1111/2041-210X.12352, 6, 4, (366-379), (2015).
- Daniel A. Griffith, Yongwan Chun, Spatial Analysis of Census Mail Response Rates: 1990–2010, Space-Time Integration in Geography and GIScience, 10.1007/978-94-017-9205-9, (145-156), (2015).
- Aaron T. Porter, Scott H. Holan, Christopher K. Wikle, Bayesian semiparametric hierarchical empirical likelihood spatial models, Journal of Statistical Planning and Inference, 10.1016/j.jspi.2015.04.002, 165, (78-90), (2015).
- Erik J. Nelson, Enbal Shacham, Brian B. Boutwell, Richard Rosenfeld, Mario Schootman, Michael Vaughn, Roger Lewis, Childhood lead exposure and sexually transmitted infections: New evidence, Environmental Research, 10.1016/j.envres.2015.10.009, 143, (131-137), (2015).
- John Hughes, copCAR: A Flexible Regression Model for Areal Data, Journal of Computational and Graphical Statistics, 10.1080/10618600.2014.948178, 24, 3, (733-755), (2015).
- Daisuke Murakami, Daniel A. Griffith, Random effects specifications in eigenvector spatial filtering: a simulation study, Journal of Geographical Systems, 10.1007/s10109-015-0213-7, 17, 4, (311-331), (2015).
- Sandy Burden, Noel Cressie, David Steel, The SAR Model for Very Large Datasets: A Reduced Rank Approach, Econometrics, 10.3390/econometrics3020317, 3, 2, (317-338), (2015).
- Matthew J. Heaton, Stephan R. Sain, Tamara A. Greasby, Christopher K. Uejio, Mary H. Hayden, Andrew J. Monaghan, Jennifer Boehnert, Kevin Sampson, Deborah Banerjee, Vishnu Nepal, Olga V. Wilhelmi, Characterizing urban vulnerability to heat stress using a spatially varying coefficient model, Spatial and Spatio-temporal Epidemiology, 10.1016/j.sste.2014.01.002, 8, (23-33), (2014).
- Matthew J. Heaton, Wombling Analysis of Childhood Tumor Rates in Florida, Statistics and Public Policy, 10.1080/2330443X.2014.913512, 1, 1, (60-67), (2014).
- See more




