On the Statistical Analysis of Dirty Pictures
SUMMARY
A continuous two‐dimensional region is partitioned into a fine rectangular array of sites or “pixels”, each pixel having a particular “colour” belonging to a prescribed finite set. The true colouring of the region is unknown but, associated with each pixel, there is a possibly multivariate record which conveys imperfect information about its colour according to a known statistical model. The aim is to reconstruct the true scene, with the additional knowledge that pixels close together tend to have the same or similar colours. In this paper, it is assumed that the local characteristics of the true scene can be represented by a non‐degenerate Markov random field. Such information can be combined with the records by Bayes' theorem and the true scene can be estimated according to standard criteria. However, the computational burden is enormous and the reconstruction may reflect undesirable large‐scale properties of the random field. Thus, a simple, iterative method of reconstruction is proposed, which does not depend on these large‐scale characteristics. The method is illustrated by computer simulations in which the original scene is not directly related to the assumed random field. Some complications, including parameter estimation, are discussed. Potential applications are mentioned briefly.
Citing Literature
Number of times cited according to CrossRef: 298
- Fatma Taher, Ahmed Soliman, Heba Kandil, Ali Mahmoud, Ahmed Shalaby, Georgy Gimel'farb, Ayman El-Baz, Accurate Segmentation of Cerebrovasculature From TOF-MRA Images Using Appearance Descriptors, IEEE Access, 10.1109/ACCESS.2020.2982869, 8, (96139-96149), (2020).
- Michele Scipioni, Stefano Pedemonte, Maria Filomena Santarelli, Luigi Landini, Probabilistic Graphical Models for Dynamic PET: A Novel Approach to Direct Parametric Map Estimation and Image Reconstruction, IEEE Transactions on Medical Imaging, 10.1109/TMI.2019.2922448, 39, 1, (152-160), (2020).
- Qiang Ji, Undirected probabilistic graphical models, Probabilistic Graphical Models for Computer Vision., 10.1016/B978-0-12-803467-5.00009-5, (131-164), (2020).
- Yibo Tan, Guoyu Wang, Image Haze Removal Based on Superpixels and Markov Random Field, IEEE Access, 10.1109/ACCESS.2020.2982910, 8, (60728-60736), (2020).
- Marius Leordeanu, Marius Leordeanu, Unsupervised Visual Learning: From Pixels to Seeing, Unsupervised Learning in Space and Time, 10.1007/978-3-030-42128-1_1, (1-52), (2020).
- Marius Leordeanu, Marius Leordeanu, Unsupervised Learning of Graph and Hypergraph Matching, Unsupervised Learning in Space and Time, 10.1007/978-3-030-42128-1_2, (53-105), (2020).
- Marius Leordeanu, Marius Leordeanu, Unsupervised Learning Towards the Future, Unsupervised Learning in Space and Time, 10.1007/978-3-030-42128-1_8, (253-295), (2020).
- Ran Song, Yonghuai Liu, Paul L. Rosin, Distinction of 3D Objects and Scenes via Classification Network and Markov Random Field, IEEE Transactions on Visualization and Computer Graphics, 10.1109/TVCG.2018.2885750, 26, 6, (2204-2218), (2020).
- Joseph E. Borovsky, The Magnetic Structure of the Solar Wind: Ionic Composition and the Electron Strahl, Geophysical Research Letters, 10.1029/2019GL084586, 47, 5, (2020).
- Ijaz Akhter, Loong Fah Cheong, Richard Hartley, undefined, 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), 10.1109/WACV45572.2020.9093369, (3462-3471), (2020).
- Wanpeng Feng, Sergey Samsonov, Qiang Qiu, Yuqing Wang, Peizhen Zhang, Tao Li, Wenjun Zheng, Orthogonal Fault Rupture and Rapid Postseismic Deformation Following 2019 Ridgecrest, California, Earthquake Sequence Revealed From Geodetic Observations, Geophysical Research Letters, 10.1029/2019GL086888, 47, 5, (2020).
- Somayeh Ebrahimkhani, Mohamed Hisham Jaward, Flavia M. Cicuttini, Anuja Dharmaratne, Yuanyuan Wang, Alba G. Seco de Herrera, A review on segmentation of knee articular cartilage: from conventional methods towards deep learning, Artificial Intelligence in Medicine, 10.1016/j.artmed.2020.101851, (101851), (2020).
- Zhilong Lv, Fubo Mi, Zhongke Wu, Yicheng Zhu, Xinyu Liu, Mei Tian, Fa Zhang, Xingce Wang, Xiaohua Wan, A Parallel Cerebrovascular Segmentation Algorithm Based on Focused Multi-Gaussians Model and Heterogeneous Markov Random Field, IEEE Transactions on NanoBioscience, 10.1109/TNB.2020.2996604, 19, 3, (538-546), (2020).
- Andrew Gilbert, Matthew Trumble, Adrian Hilton, John Collomosse, Inpainting of Wide-Baseline Multiple Viewpoint Video, IEEE Transactions on Visualization and Computer Graphics, 10.1109/TVCG.2018.2889297, 26, 7, (2417-2428), (2020).
- Ming Hao, Mengchao Zhou, Jian Jin, Wenzhong Shi, An Advanced Superpixel-Based Markov Random Field Model for Unsupervised Change Detection, IEEE Geoscience and Remote Sensing Letters, 10.1109/LGRS.2019.2948660, 17, 8, (1401-1405), (2020).
- Hammou Fadili, undefined, 2020 International Multi-Conference on: “Organization of Knowledge and Advanced Technologies” (OCTA), 10.1109/OCTA49274.2020.9151656, (1-7), (2020).
- Hammou Fadili, undefined, 2020 International Multi-Conference on: “Organization of Knowledge and Advanced Technologies” (OCTA), 10.1109/OCTA49274.2020.9151846, (1-6), (2020).
- Anindya Bhadra, Jyotishka Datta, Yunfan Li, Nicholas Polson, Horseshoe Regularisation for Machine Learning in Complex and Deep Models, International Statistical Review, 10.1111/insr.12360, 88, 2, (302-320), (2020).
- Qikun Xiang, Ido Nevat, Gareth W. Peters, Bayesian Spatial Field Reconstruction With Unknown Distortions in Sensor Networks, IEEE Transactions on Signal Processing, 10.1109/TSP.2020.3011023, 68, (4336-4351), (2020).
- Md Mahmudul Hasan, Shuangqing Wei, Ali Moharrer, undefined, 2020 IEEE International Symposium on Information Theory (ISIT), 10.1109/ISIT44484.2020.9174323, (2580-2585), (2020).
- Susmita Panda, Pradipta Kumar Nanda, MRF Model-Based Estimation of Camera Parameters and Detection of Underwater Moving Objects, International Journal of Cognitive Informatics and Natural Intelligence, 10.4018/IJCINI.2020100101, 14, 4, (1), (2020).
- Paul L. Fatti, Ruben Klein, S. James Press, Donald B. Owen, Hierarchical Bayes Models in Contextual Spatial Classification, Statistics of Quality, 10.1201/9781003067559, (275-294), (2020).
- Jeroen Chua, Pedro F. Felzenszwalb, Scene Grammars, Factor Graphs, and Belief Propagation, Journal of the ACM, 10.1145/3396886, 67, 4, (1-41), (2020).
- Mohammed Ghazal, Ali Mahmoud, Ahmed Shalaby, Shams Shaker, Adel Khelifi, Ayman El-Baz, undefined, 2020 IEEE International Conference on Image Processing (ICIP), 10.1109/ICIP40778.2020.9190754, (2985-2989), (2020).
- F. Taher, A. Soliman, H. Kandil, A. Mahmoud, A. Shalaby, G. Gimel'farb, A. El-Baz, undefined, 2020 IEEE International Conference on Image Processing (ICIP), 10.1109/ICIP40778.2020.9191077, (394-397), (2020).
- Junjun Yin, Xiyun Liu, Jian Yang, Chih-Yuan Chu, Yang-Lang Chang, PolSAR Image Classification Based on Statistical Distribution and MRF, Remote Sensing, 10.3390/rs12061027, 12, 6, (1027), (2020).
- Umberto Amato, Anestis Antoniadis, Maria Francesca Carfora, Cloud Detection: An Assessment Study from the ESA Round Robin Exercise for PROBA-V, Sensors, 10.3390/s20072090, 20, 7, (2090), (2020).
- Anitha Shanmugam, Jayanthi Paramasivam, A two‐level authentication scheme for clone node detection in smart cities using Internet of things, Computational Intelligence, 10.1111/coin.12330, 0, 0, (2020).
- Rodrigo Cardenas, Ariel H Curiale, German Mato, Left ventricle segmentation using a Bayesian approach with distance dependent shape priors, Biomedical Physics & Engineering Express, 10.1088/2057-1976/ab9556, 6, 4, (045013), (2020).
- Raúl Cruz-Barbosa, Saiveth Hernández-Hernández, Luis Enrique Sucar, Mass segmentation of mammograms using Markov models associated with constrained clustering, Medical & Biological Engineering & Computing, 10.1007/s11517-020-02221-w, (2020).
- Samuel W. Remedios, Snehashis Roy, Camilo Bermudez, Mayur B. Patel, John A. Butman, Bennett A. Landman, Dzung L. Pham, Distributed deep learning across multisite datasets for generalized CT hemorrhage segmentation, Medical Physics, 10.1002/mp.13880, 47, 1, (89-98), (2019).
- Phuong T. Vu, Timothy V. Larson, Adam A. Szpiro, Probabilistic predictive principal component analysis for spatially misaligned and high‐dimensional air pollution data with missing observations, Environmetrics, 10.1002/env.2614, 31, 4, (2019).
- Veronika Římalová, Alessandra Menafoglio, Alessia Pini, Vilém Pechanec, Eva Fišerová, A permutation approach to the analysis of spatiotemporal geochemical data in the presence of heteroscedasticity, Environmetrics, 10.1002/env.2611, 31, 4, (2019).
- Unn Dahlén, Johan Lindström, Marko Scholze, Spatiotemporal reconstructions of global CO2‐fluxes using Gaussian Markov random fields, Environmetrics, 10.1002/env.2610, 31, 4, (2019).
- Reihaneh Entezari, Patrick E. Brown, Jeffrey S. Rosenthal, Bayesian spatial analysis of hardwood tree counts in forests via MCMC, Environmetrics, 10.1002/env.2608, 31, 4, (2019).
- Candace Berrett, William F. Christensen, Stephan R. Sain, Nathan Sandholtz, David W. Coats, Claudia Tebaldi, Hedibert F. Lopes, Modeling sea‐level processes on the U.S. Atlantic Coast, Environmetrics, 10.1002/env.2609, 31, 4, (2019).
- Victor Freguglia, Nancy L. Garcia, Juliano L. Bicas, Hidden Markov random field models applied to color homogeneity evaluation in dyed textile images, Environmetrics, 10.1002/env.2613, 31, 4, (2019).
- Zhe Jiang, A Survey on Spatial Prediction Methods, IEEE Transactions on Knowledge and Data Engineering, 10.1109/TKDE.2018.2866809, 31, 9, (1645-1664), (2019).
- Juan Manuel Núñez, Sandra Medina, Gerardo Ávila, Jorge Montejano, High-Resolution Satellite Imagery Classification for Urban Form Detection, Satellite Information Classification and Interpretation, 10.5772/intechopen.77202, (2019).
- Vishnu Kant Chaurasia, Hemant Amhia, undefined, 2019 International Conference on Communication and Signal Processing (ICCSP), 10.1109/ICCSP.2019.8698036, (0690-0694), (2019).
- Camille Chapdelaine, Ali Mohammad-Djafari, Nicolas Gac, Estelle Parra, Error-Splitting Forward Model for Iterative Reconstruction in X-Ray Computed Tomography and Application With Gauss–Markov–Potts Prior, IEEE Transactions on Computational Imaging, 10.1109/TCI.2018.2885432, 5, 2, (317-332), (2019).
- Lazhar Khelifi, Max Mignotte, MC-SSM: Nonparametric Semantic Image Segmentation With the ICM Algorithm, IEEE Transactions on Multimedia, 10.1109/TMM.2019.2891418, (1-1), (2019).
- Koki Obinata, Shun Katakami, Yonghao Yue, Masato Okada, Ising Model Parameter Estimation with Confidence Evaluation Using the Exchange Monte Carlo Method, Journal of the Physical Society of Japan, 10.7566/JPSJ.88.064802, 88, 6, (064802), (2019).
- Elias Mendez Dominguez, Christophe Magnard, Erich Meier, David Small, Michael E. Schaepman, Daniel Henke, A Back-Projection Tomographic Framework for VHR SAR Image Change Detection, IEEE Transactions on Geoscience and Remote Sensing, 10.1109/TGRS.2019.2891308, 57, 7, (4470-4484), (2019).
- Chen Zheng, Leiguang Wang, Xiaohui Chen, A Hybrid Markov Random Field Model With Multi-Granularity Information for Semantic Segmentation of Remote Sensing Imagery, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10.1109/JSTARS.2019.2917128, 12, 8, (2728-2740), (2019).
- Chao Pan, Xinbo Gao, Ying Wang, Jie Li, Markov Random Fields Integrating Adaptive Interclass-Pair Penalty and Spectral Similarity for Hyperspectral Image Classification, IEEE Transactions on Geoscience and Remote Sensing, 10.1109/TGRS.2018.2874077, 57, 5, (2520-2534), (2019).
- X. Song, L. Wu, G. Liu, Unsupervised color texture segmentation based on multi-scale region-level Markov random field models, Computer Optics, 10.18287/2412-6179-2019-43-2-264-269, 43, 2, (264-269), (2019).
- John Stechschulte, Nisar Ahmed, Christoffer Heckman, undefined, 2019 International Conference on Robotics and Automation (ICRA), 10.1109/ICRA.2019.8793857, (7143-7149), (2019).
- Redha Touati, Max Mignotte, Mohamed Dahmane, Multimodal Change Detection in Remote Sensing Images Using an Unsupervised Pixel Pairwise Based Markov Random Field Model, IEEE Transactions on Image Processing, 10.1109/TIP.2019.2933747, (1-1), (2019).
- Florence Rossant, Kate Grieve, Michel Paques, Highlighting Directional Reflectance Properties of Retinal Substructures From D-OCT Images, IEEE Transactions on Biomedical Engineering, 10.1109/TBME.2019.2900425, 66, 11, (3105-3118), (2019).
- Oscar Jalnefjord, Mikael Montelius, Jonathan Arvidsson, Eva Forssell‐Aronsson, Göran Starck, Maria Ljungberg, Data‐driven identification of tumor subregions based on intravoxel incoherent motion reveals association with proliferative activity, Magnetic Resonance in Medicine, 10.1002/mrm.27820, 82, 4, (1480-1490), (2019).
- Hui Wang, Florian Wellmann, Tianqi Zhang, Alexander Schaaf, Robin Maximilian Kanig, Elizabeth Verweij, Christian Hebel, Jan Kruk, Pattern Extraction of Topsoil and Subsoil Heterogeneity and Soil‐Crop Interaction Using Unsupervised Bayesian Machine Learning: An Application to Satellite‐Derived NDVI Time Series and Electromagnetic Induction Measurements, Journal of Geophysical Research: Biogeosciences, 10.1029/2019JG005046, 124, 6, (1524-1544), (2019).
- Yu Shen, Jianyu Chen, Liang Xiao, Delu Pan, A Bilevel Contextual MRF Model for Supervised Classification of High Spatial Resolution Remote Sensing Images, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10.1109/JSTARS.2019.2950946, 12, 12, (5360-5372), (2019).
- Roy Uziel, Meitar Ronen, Oren Freifeld, undefined, 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 10.1109/ICCV.2019.00856, (8469-8478), (2019).
- Emre Akyilmaz, Multilogit Prior-Based Gamma Mixture Model for Segmentation of SAR Images, IEEE Geoscience and Remote Sensing Letters, 10.1109/LGRS.2018.2880819, 16, 5, (741-745), (2019).
- Stelios Zimeras, Yiannis G. Matsinos, Modeling Uncertainty Based on Spatial Models in Spreading Diseases, International Journal of Reliable and Quality E-Healthcare, 10.4018/IJRQEH.2019100103, 8, 4, (55-66), (2019).
- Y. Wang, G.Q. Zhou, M.M. Li, Multiscale SAR image segmentation by combining curvelet transform and GMTRJ algorithms, Digital Signal Processing, 10.1016/j.dsp.2019.102583, (102583), (2019).
- Yin Song, Farouk Nathoo, Arif Babul, A Potts‐mixture spatiotemporal joint model for combined magnetoencephalography and electroencephalography data, Canadian Journal of Statistics, 10.1002/cjs.11519, 47, 4, (688-711), (2019).
- Mohammed Ghazal, Ali Mahmoud, Ahmed Shalaby, Ayman El-Baz, Automated framework for accurate segmentation of leaf images for plant health assessment, Environmental Monitoring and Assessment, 10.1007/s10661-019-7615-9, 191, 8, (2019).
- Chen Zheng, Min Zhang, Xiaohui Chen, Leiguang Wang, undefined, IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, 10.1109/IGARSS.2019.8900552, (3852-3855), (2019).
- Sezer Kutluk, Koray Kayabol, Aydin Akan, undefined, 2019 27th European Signal Processing Conference (EUSIPCO), 10.23919/EUSIPCO.2019.8902983, (1-5), (2019).
- Zhe Li, Yong Xia, Hichem Sahli, CSA-DE/EDA: a Novel Bio-inspired Algorithm for Function Optimization and Segmentation of Brain MR Images, Cognitive Computation, 10.1007/s12559-019-09663-x, (2019).
- Nagesh K. Subbanna, Deepthi Rajashekar, Bastian Cheng, Götz Thomalla, Jens Fiehler, Tal Arbel, Nils D. Forkert, Stroke Lesion Segmentation in FLAIR MRI Datasets Using Customized Markov Random Fields, Frontiers in Neurology, 10.3389/fneur.2019.00541, 10, (2019).
- Fatemeh Zakeri, Bo Huang, Mohammad Reza Saradjian, Fusion of Change Vector Analysis in Posterior Probability Space and Postclassification Comparison for Change Detection from Multispectral Remote Sensing Data, Remote Sensing, 10.3390/rs11131511, 11, 13, (1511), (2019).
- Alexandre L. M. Levada, Closed-form Bayesian image denoising: improving the adaptive Wiener filter through pairwise Gaussian-Markov random fields, Communications in Statistics - Simulation and Computation, 10.1080/03610918.2019.1577969, (1-25), (2019).
- Chen Zheng, Xinxin Pan, Xiaohui Chen, Xiaohui Yang, Xin Xin, Limin Su, An Object-Based Markov Random Field Model with Anisotropic Penalty for Semantic Segmentation of High Spatial Resolution Remote Sensing Imagery, Remote Sensing, 10.3390/rs11232878, 11, 23, (2878), (2019).
- Peng Liu, Yan Song, Segmentation of sonar imagery using convolutional neural networks and Markov random field, Multidimensional Systems and Signal Processing, 10.1007/s11045-019-00652-9, (2019).
- David Edward Williams, Low Cost Sensor Networks; How Do We Know the Data are Reliable?, ACS Sensors, 10.1021/acssensors.9b01455, (2019).
- D. Andrew Brown, Christopher S. McMahan, Stella Watson Self, Sampling Strategies for Fast Updating of Gaussian Markov Random Fields, The American Statistician, 10.1080/00031305.2019.1595144, (1-24), (2019).
- Jonas Pichat, Juan Eugenio Iglesias, Tarek Yousry, Sébastien Ourselin, Marc Modat, A Survey of Methods for 3D Histology Reconstruction, Medical Image Analysis, 10.1016/j.media.2018.02.004, 46, (73-105), (2018).
- Zeya Wang, Shaolong Cao, Jeffrey Morris, Jaeil Ahn, Rongjie Liu, Svitlana Tyekucheva, Fan Gao, Bo Li, Wei Lu, Ximing Tang, Ignacio I. Wistuba, Michaela Bowden, Lorelei Mucci, Massimo Loda, Giovanni Parmigiani, Chris C. Holmes, Wenyi Wang, Transcriptome Deconvolution of Heterogeneous Tumor Samples with Immune Infiltration, SSRN Electronic Journal, 10.2139/ssrn.3188487, (2018).
- Shining Ma, Tao Jiang, Rui Jiang, Constructing tissue-specific transcriptional regulatory networks via a Markov random field, BMC Genomics, 10.1186/s12864-018-5277-6, 19, S10, (2018).
- De-Fu Lian, Qi Liu, Jointly Recommending Library Books and Predicting Academic Performance: A Mutual Reinforcement Perspective, Journal of Computer Science and Technology, 10.1007/s11390-018-1847-y, 33, 4, (654-667), (2018).
- D. Khue Le-Huu, Nikos Paragios, undefined, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10.1109/CVPR.2018.00580, (5533-5541), (2018).
- Nasser Kazemi, Automatic blind deconvolution with Toeplitz-structured sparse total least squares, GEOPHYSICS, 10.1190/geo2018-0136.1, 83, 6, (V345-V357), (2018).
- Binglin Li, Shuangqing Wei, Yue Wang, Jian Yuan, Chernoff information between Gaussian trees, Information Sciences, 10.1016/j.ins.2018.04.059, 453, (442-462), (2018).
- Avinash Jaiswal, Mark A. Williams, Abhir Bhalerao, Manoj K. Tiwari, Jason M. Warnett, Markov random field segmentation for industrial computed tomography with metal artefacts, Journal of X-Ray Science and Technology, 10.3233/XST-17322, 26, 4, (573-591), (2018).
- T. S. Mandziy, I. B. Ivasenko, Segmentation of corrosion damage images with unknown background by energy minimization. Information Extraction and Processing, Information extraction and processing, 10.15407/vidbir2018.46.038, 2018, 46, (38-42), (2018).
- Rodrigo Pessoa, William Barbosa, James McLoughlin, Anil Kokaram, undefined, 2018 29th Irish Signals and Systems Conference (ISSC), 10.1109/ISSC.2018.8585355, (1-6), (2018).
- Jorge Martinez, Silvina Pistonesi, Maria Cristina Maciel, Ana Georgina Flesia, undefined, 2018 IEEE Statistical Signal Processing Workshop (SSP), 10.1109/SSP.2018.8450826, (105-109), (2018).
- Michael Krawez, Tim Caselitz, Daniel Buscher, Mark Van Loock, Wolfram Burgard, undefined, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 10.1109/IROS.2018.8594107, (3210-3217), (2018).
- Hamid Ghanbari, Saeid Homayouni, Abdolreza Safari, Pedram Ghamisi, Gaussian mixture model and Markov random fields for hyperspectral image classification, European Journal of Remote Sensing, 10.1080/22797254.2018.1503565, 51, 1, (889-900), (2018).
- Maryam Ramezani, Ali Khodadadi, Hamid R. Rabiee, Community Detection Using Diffusion Information, ACM Transactions on Knowledge Discovery from Data, 10.1145/3110215, 12, 2, (1-22), (2018).
- Discussion of the Paper by Lee and Nelder, Journal of the Royal Statistical Society: Series B (Methodological), 10.1111/j.2517-6161.1996.tb02106.x, 58, 4, (656-678), (2018).
- D. M. Titterington, 11. Stochastic Geometry Models in Image Analysis and Spatial Statistics, Journal of the Royal Statistical Society: Series A (Statistics in Society), 10.2307/2983347, 159, 3, (627-628), (2018).
- Glen A. Satten, Ira M. Longini, Markov Chains with Measurement Error: Estimating the ‘True’ Course of a Marker of the Progression of Human Immunodeficiency Virus Disease, Journal of the Royal Statistical Society: Series C (Applied Statistics), 10.2307/2986089, 45, 3, (275-295), (2018).
- Vincent Granville, Jean Paul Rasson, Multivariate Discriminant Analysis and Maximum Penalized Likelihood Density Estimation, Journal of the Royal Statistical Society: Series B (Methodological), 10.1111/j.2517-6161.1995.tb02044.x, 57, 3, (501-517), (2018).
- Charles J. Geyer, On the Convergence of Monte Carlo Maximum Likelihood Calculations, Journal of the Royal Statistical Society: Series B (Methodological), 10.1111/j.2517-6161.1994.tb01976.x, 56, 1, (261-274), (2018).
- Juha Heikkinen, Harri Högmander, Fully Bayesian Approach to Image Restoration with an Application in Biogeography, Journal of the Royal Statistical Society: Series C (Applied Statistics), 10.2307/2986258, 43, 4, (569-582), (2018).
- Julian Besag, Peter J. Green, Spatial Statistics and Bayesian Computation, Journal of the Royal Statistical Society: Series B (Methodological), 10.1111/j.2517-6161.1993.tb01467.x, 55, 1, (25-37), (2018).
- Discussion on the Meeting on the Gibbs Sampler and Other Markov Chain Monte Carlo Methods, Journal of the Royal Statistical Society: Series B (Methodological), 10.1111/j.2517-6161.1993.tb01469.x, 55, 1, (53-102), (2018).
- Arnoldo Frigessi, Patrizia Stefano, Chii‐Ruey Hwang, Shuenn‐Jyi Sheu, Convergence Rates of the Gibbs Sampler, the Metropolis Algorithm and Other Single‐Site Updating Dynamics, Journal of the Royal Statistical Society: Series B (Methodological), 10.1111/j.2517-6161.1993.tb01479.x, 55, 1, (205-219), (2018).
- Discussion of the Paper by Geyer and Thompson, Journal of the Royal Statistical Society: Series B (Methodological), 10.1111/j.2517-6161.1992.tb01444.x, 54, 3, (683-699), (2018).
- John Haslett, Spatial Data Analysis—Challenges, Journal of the Royal Statistical Society: Series D (The Statistician), 10.2307/2348549, 41, 3, (271-284), (2018).
- Subhash Lele, Jackknifing Linear Estimating Equations: Asymptotic Theory and Applications in Stochastic Processes, Journal of the Royal Statistical Society: Series B (Methodological), 10.1111/j.2517-6161.1991.tb01823.x, 53, 1, (253-267), (2018).
- W. Qian, D. M. Titterington, Multidimensional Markov Chain Models for Image Textures, Journal of the Royal Statistical Society: Series B (Methodological), 10.1111/j.2517-6161.1991.tb01855.x, 53, 3, (661-674), (2018).
- B. W. Silverman, M. C. Jones, J. D. Wilson, D. W. Nychka, A Smoothed Em Approach to Indirect Estimation Problems, with Particular Reference to Stereology and Emission Tomography, Journal of the Royal Statistical Society: Series B (Methodological), 10.1111/j.2517-6161.1990.tb01788.x, 52, 2, (271-303), (2018).
- D. M. Greig, B. T. Porteous, A. H. Seheult, Exact Maximum A Posteriori Estimation for Binary Images, Journal of the Royal Statistical Society: Series B (Methodological), 10.1111/j.2517-6161.1989.tb01764.x, 51, 2, (271-279), (2018).
- R. M. Cormack, Statistical Challenges in the Environmental Sciences: A Personal View, Journal of the Royal Statistical Society: Series A (Statistics in Society), 10.2307/2982192, 151, 1, (201-210), (2018).
- RICCARDO RASTELLI, PIERRE LATOUCHE, NIAL FRIEL, Choosing the number of groups in a latent stochastic blockmodel for dynamic networks, Network Science, 10.1017/nws.2018.19, (1-25), (2018).
- See more




