Modelling Extreme Multivariate Events
SUMMARY
The classical treatment of multivariate extreme values is through componentwise ordering, though in practice most interest is in actual extreme events. Here the point process of observations which are extreme in at least one component is considered. Parametric models for the dependence between components must satisfy certain constraints. Two new techniques for generating such models are presented. Aspects of the statistical estimation of the resulting models are discussed and are illustrated with an application to oceanographic data.
Citing Literature
Number of times cited according to CrossRef: 48
- Sebastian Engelke, Adrien S. Hitz, Graphical models for extremes, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 10.1111/rssb.12355, 82, 4, (871-932), (2020).
- Aloïs Tilloy, Bruce D. Malamud, Hugo Winter, Amélie Joly-Laugel, Evaluating the efficacy of bivariate extreme modelling approaches for multi-hazard scenarios, Natural Hazards and Earth System Sciences, 10.5194/nhess-20-2091-2020, 20, 8, (2091-2117), (2020).
- L. Mhalla, M. Carvalho, V. Chavez‐Demoulin, Regression‐type models for extremal dependence, Scandinavian Journal of Statistics, 10.1111/sjos.12388, 46, 4, (1141-1167), (2019).
- R. P. Towe, J. A. Tawn, R. Lamb, C. G. Sherlock, Model‐based inference of conditional extreme value distributions with hydrological applications, Environmetrics, 10.1002/env.2575, 30, 8, (2019).
- Sebastian Engelke, Thomas Opitz, Jennifer Wadsworth, Extremal dependence of random scale constructions, Extremes, 10.1007/s10687-019-00353-3, (2019).
- Sabrina Vettori, Raphaël Huser, Johan Segers, Marc G. Genton, Bayesian Model Averaging Over Tree-based Dependence Structures for Multivariate Extremes, Journal of Computational and Graphical Statistics, 10.1080/10618600.2019.1647847, (1-17), (2019).
- Stuart G. Coles, Jonathan A. Tawn, A Bayesian Analysis of Extreme Rainfall Data, Journal of the Royal Statistical Society: Series C (Applied Statistics), 10.2307/2986068, 45, 4, (463-478), (2018).
- Stuart G. Coles, Jonathan A. Tawn, Modelling Extremes of the Areal Rainfall Process, Journal of the Royal Statistical Society: Series B (Methodological), 10.1111/j.2517-6161.1996.tb02085.x, 58, 2, (329-347), (2018).
- Michael E. Robinson, Jonathan A. Tawn, Statistics for Exceptional Athletics Records, Journal of the Royal Statistical Society: Series C (Applied Statistics), 10.2307/2986141, 44, 4, (499-511), (2018).
- Stuart G. Coles, David Walshaw, Directional Modelling of Extreme Wind Speeds, Journal of the Royal Statistical Society: Series C (Applied Statistics), 10.2307/2986118, 43, 1, (139-157), (2018).
- Stuart G. Coles, Jonathan A. Tawn, Statistical Methods for Multivariate Extremes: An Application to Structural Design, Journal of the Royal Statistical Society: Series C (Applied Statistics), 10.2307/2986112, 43, 1, (1-31), (2018).
- Stuart G. Coles, Regional Modelling of Extreme Storms Via Max‐Stable Processes, Journal of the Royal Statistical Society: Series B (Methodological), 10.1111/j.2517-6161.1993.tb01941.x, 55, 4, (797-816), (2018).
- Harry Joe, Richard L. Smith, Ishay Weissman, Bivariate Threshold Methods for Extremes, Journal of the Royal Statistical Society: Series B (Methodological), 10.1111/j.2517-6161.1992.tb01871.x, 54, 1, (171-183), (2018).
- Ben Gouldby, David Wyncoll, Mike Panzeri, Mark Franklin, Tim Hunt, Dominic Hames, Nigel Tozer, Peter Hawkes, Uwe Dornbusch, Tim Pullen, Multivariate extreme value modelling of sea conditions around the coast of England, Proceedings of the Institution of Civil Engineers - Maritime Engineering, 10.1680/jmaen.2016.16, 170, 1, (3-20), (2017).
- Abhay K. Singh, David E. Allen, Robert J. Powell, Tail dependence analysis of stock markets using extreme value theory, Applied Economics, 10.1080/00036846.2017.1287858, 49, 45, (4588-4599), (2017).
- Darmesah Gabd, Jonathan Tawn, undefined, , 10.1063/1.4980985, (080001), (2017).
- J. L. Wadsworth, J. A. Tawn, A. C. Davison, D. M. Elton, Modelling across extremal dependence classes, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 10.1111/rssb.12157, 79, 1, (149-175), (2016).
- Linda Mhalla, Vallrie Chavez-Demoulin, Philippe Naveau, Non Linear Models for Extremal Dependence, SSRN Electronic Journal, 10.2139/ssrn.2836587, (2016).
- John H. J. Einmahl, Anna Kiriliouk, Johan Segers, A Continuous Updating Weighted Least Squares Estimator of Tail Dependence in High Dimensions, SSRN Electronic Journal, 10.2139/ssrn.2717531, (2016).
- Douglas Pender, Sandhya Patidar, Gareth Pender, Heather Haynes, Stochastic simulation of daily streamflow sequences using a hidden Markov model, Hydrology Research, 10.2166/nh.2015.114, 47, 1, (75-88), (2015).
- Boris Beranger, Simone Padoan, Dipak Dey, Jun Yan, Extreme Dependence Models, Extreme Value Modeling and Risk Analysis, 10.1201/b19721, (325-352), (2015).
- Y. Luo, D. Sui, H. Shi, Z. Zhou, D. Wang, Multivariate extreme value analysis of storm surges in SCS on peak over threshold method, Ocean Science Discussions, 10.5194/osd-12-2783-2015, 12, 6, (2783-2805), (2015).
- Sebastian Engelke, Alexander Malinowski, Zakhar Kabluchko, Martin Schlather, Estimation of Hüsler–Reiss distributions and Brown–Resnick processes, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 10.1111/rssb.12074, 77, 1, (239-265), (2014).
- Sami Umut Can, John H. J. Einmahl, Estate V. Khmaladze, Roger J. A. Laeven, Asymptotically Distribution-Free Goodness-of-Fit Testing for Tail Copulas, SSRN Electronic Journal, 10.2139/ssrn.2460733, (2014).
- Anne Sabourin, Philippe Naveau, Bayesian Dirichlet mixture model for multivariate extremes: A re-parametrization, Computational Statistics & Data Analysis, 10.1016/j.csda.2013.04.021, 71, (542-567), (2014).
- L. Yao, W. Dongxiao, Z. Zhenwei, H. Weihong, S. Hui, A Monte Carlo simulation of multivariate general Pareto distribution and its application, Ocean Science Discussions, 10.5194/osd-11-2733-2014, 11, 6, (2733-2753), (2014).
- R. A. Olinda, J. Blanchet, C. A. C. dos Santos, V. A. Ozaki, P. J. Ribeiro Jr., Spatial extremes modeling applied to extreme precipitation data in the state of Paraná, Hydrology and Earth System Sciences Discussions, 10.5194/hessd-11-12731-2014, 11, 11, (12731-12764), (2014).
- Anne-Laure Fougères, Cécile Mercadier, John P. Nolan, Dense classes of multivariate extreme value distributions, Journal of Multivariate Analysis, 10.1016/j.jmva.2012.11.015, 116, (109-129), (2013).
- Y. Liu, J.A. Tawn, Volatility model selection for extremes of financial time series, Journal of Statistical Planning and Inference, 10.1016/j.jspi.2012.08.009, 143, 3, (520-530), (2013).
- Abhay Kumar Singh, David E. Allen, Robert J. Powell, Risk and Dependence Analysis of Australian Stock Market - The Case of Extreme Value Theory, SSRN Electronic Journal, 10.2139/ssrn.2136294, (2012).
- A. Mahmud, M. Hixson, M. J. Kleeman, Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change, Atmospheric Chemistry and Physics, 10.5194/acp-12-7453-2012, 12, 16, (7453-7463), (2012).
- A. Mahmud, M. Hixson, M. J. Kleeman, Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change, Atmospheric Chemistry and Physics Discussions, 10.5194/acpd-12-5881-2012, 12, 2, (5881-5901), (2012).
- Simon Guillotte, François Perron, Johan Segers, Non‐parametric Bayesian inference on bivariate extremes, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 10.1111/j.1467-9868.2010.00770.x, 73, 3, (377-406), (2011).
- John H. J. Einmahl, Andrea Krajina, Johan Segers, An M-Estimator for Tail Dependence in Arbitrary Dimensions, SSRN Electronic Journal, 10.2139/ssrn.1760022, (2011).
- Panagiota Galiatsatou, Panagiotis Prinos, Statistical models for bivariate extremal analysis of a spatial process, Journal of Hydraulic Research, 10.1080/00221686.2008.9521959, 46, sup2, (257-270), (2010).
- Sawsan Abbas, Ser-Huang Poon, Jonathan Tawn, Hedging the Black Swan: Conditional Heteroskedasticity and Tail Dependence in S&P500 and Vix, SSRN Electronic Journal, 10.2139/ssrn.1549164, (2009).
- Alexandra Ramos, Anthony Ledford, A new class of models for bivariate joint tails, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 10.1111/j.1467-9868.2008.00684.x, 71, 1, (219-241), (2008).
- John H. J. Einmahl, Johan Segers, Maximum Empirical Likelihood Estimation of the Spectral Measure of an Extreme Value Distribution, SSRN Electronic Journal, 10.2139/ssrn.1137520, (2008).
- Discussion on the paper by Heffernan and Tawn, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 10.1111/j.1467-9868.2004.2050b.x, 66, 3, (530-546), (2008).
- John H. J. Einmahl, Andrea Krajina, Johan Segers, A Method of Moments Estimator of Tail Dependence, SSRN Electronic Journal, 10.2139/ssrn.1025397, (2007).
- Debbie J. Dupuis, Bruce L. Jones, Multivariate Extreme Value Theory And Its Usefulness In Understanding Risk, North American Actuarial Journal, 10.1080/10920277.2006.10597411, 10, 4, (1-27), (2006).
- Alec Stephenson, Eric Gilleland, Software for the analysis of extreme events: The current state and future directions, Extremes, 10.1007/s10687-006-7962-0, 8, 3, (87-109), (2006).
- V. Chavez‐Demoulin, A. C. Davison, Generalized additive modelling of sample extremes, Journal of the Royal Statistical Society: Series C (Applied Statistics), 10.1111/j.1467-9876.2005.00479.x, 54, 1, (207-222), (2004).
- Janet E. Heffernan, Jonathan A. Tawn, A conditional approach for multivariate extreme values (with discussion), Journal of the Royal Statistical Society: Series B (Statistical Methodology), 10.1111/j.1467-9868.2004.02050.x, 66, 3, (497-546), (2004).
- Kazuyoshi NISHIJIMA, Jun KANDA, A Multi-point Model for Annual Maximum Wind Speed via Max-stable Process, Journal of Wind Engineering, 10.5359/jwe.29.99_215, 29, 2, (99_215-99_226), (2004).
- Anthony W. Ledford, Jonathan A. Tawn, Diagnostics for dependence within time series extremes, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 10.1111/1467-9868.00400, 65, 2, (521-543), (2003).
- Eric Bouyé, Valdo Durrleman, Ashkan Nikeghbali, Gaël Riboulet, Thierry Roncalli, Copulas for Finance - A Reading Guide and Some Applications, SSRN Electronic Journal, 10.2139/ssrn.1032533, (2000).
- Statistics of coastal flood prevention, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 10.1098/rsta.1990.0126, 332, 1627, (457-476), (1990).




