Estimating the density of ethnic minorities and aged people in Berlin: multivariate kernel density estimation applied to sensitive georeferenced administrative data protected via measurement error
Summary
Modern systems of official statistics require the timely estimation of area‐specific densities of subpopulations. Ideally estimates should be based on precise geocoded information, which is not available because of confidentiality constraints. One approach for ensuring confidentiality is by rounding the geoco‐ordinates. We propose multivariate non‐parametric kernel density estimation that reverses the rounding process by using a measurement error model. The methodology is applied to the Berlin register of residents for deriving density estimates of ethnic minorities and aged people. Estimates are used for identifying areas with a need for new advisory centres for migrants and infrastructure for older people.
Citing Literature
Number of times cited according to CrossRef: 5
- Sandra Hadam, Timo Schmid, Joanna Simm, Kleinräumige Prädiktion von Bevölkerungszahlen basierend auf Mobilfunkdaten aus Deutschland, Qualität bei zusammengeführten Daten, 10.1007/978-3-658-31009-7_3, (27-44), (2020).
- Zengli Wang, Lin Liu, Hanlin Zhou, Minxuan Lan, How Is the Confidentiality of Crime Locations Affected by Parameters in Kernel Density Estimation?, ISPRS International Journal of Geo-Information, 10.3390/ijgi8120544, 8, 12, (544), (2019).
- Monghyeon Lee, Yongwan Chun, Daniel A. Griffith, An evaluation of kernel smoothing to protect the confidentiality of individual locations, International Journal of Urban Sciences, 10.1080/12265934.2018.1482778, (1-17), (2018).
- Ulrich Rendtel, Milo Ruhanen, Die Konstruktion von Dienstleistungskarten mit Open Data am Beispiel des lokalen Bedarfs an Kinderbetreuung in BerlinThe construction of service maps with open data: the case of local need for child care in Berlin, AStA Wirtschafts- und Sozialstatistisches Archiv, 10.1007/s11943-018-0235-y, (2018).
- Marcus Groß, Ulrich Rendtel, Kernel Density Estimation for Heaped Data, Journal of Survey Statistics and Methodology, 10.1093/jssam/smw011, 4, 3, (339-361), (2016).




