Fast bivariate P‐splines: the sandwich smoother
Summary
We propose a fast penalized spline method for bivariate smoothing. Univariate P‐spline smoothers are applied simultaneously along both co‐ordinates. The new smoother has a sandwich form which suggested the name ‘sandwich smoother’ to a referee. The sandwich smoother has a tensor product structure that simplifies an asymptotic analysis and it can be fast computed. We derive a local central limit theorem for the sandwich smoother, with simple expressions for the asymptotic bias and variance, by showing that the sandwich smoother is asymptotically equivalent to a bivariate kernel regression estimator with a product kernel. As far as we are aware, this is the first central limit theorem for a bivariate spline estimator of any type. Our simulation study shows that the sandwich smoother is orders of magnitude faster to compute than other bivariate spline smoothers, even when the latter are computed by using a fast generalized linear array model algorithm, and comparable with them in terms of mean integrated squared errors. We extend the sandwich smoother to array data of higher dimensions, where a generalized linear array model algorithm improves the computational speed of the sandwich smoother. One important application of the sandwich smoother is to estimate covariance functions in functional data analysis. In this application, our numerical results show that the sandwich smoother is orders of magnitude faster than local linear regression. The speed of the sandwich formula is important because functional data sets are becoming quite large.
Citing Literature
Number of times cited according to CrossRef: 36
- Joshua P. French, Piotr S. Kokoszka, A sandwich smoother for spatio-temporal functional data, Spatial Statistics, 10.1016/j.spasta.2020.100413, (100413), (2020).
- Jiayi Wang, Raymond K. W. Wong, Xiaoke Zhang, Low-Rank Covariance Function Estimation for Multidimensional Functional Data, Journal of the American Statistical Association, 10.1080/01621459.2020.1820344, (1), (2020).
- Luo Xiao, Zhe Nan, Uniform convergence of penalized splines, Stat, 10.1002/sta4.297, 9, 1, (2020).
- Israel Martínez‐Hernández, Marc G. Genton, Nonparametric trend estimation in functional time series with application to annual mortality rates, Biometrics, 10.1111/biom.13353, 0, 0, (2020).
- Aurore Delaigle, Peter Hall, Wei Huang, Alois Kneip, Estimating the Covariance of Fragmented and Other Related Types of Functional Data, Journal of the American Statistical Association, 10.1080/01621459.2020.1723597, (1-19), (2020).
- Daniel R. Kowal, Daniel C. Bourgeois, Bayesian Function-on-Scalars Regression for High-Dimensional Data, Journal of Computational and Graphical Statistics, 10.1080/10618600.2019.1710837, (1-10), (2020).
- Ana‐Maria Staicu, Md Nazmul Islam, Raluca Dumitru, Eric van Heugten, Longitudinal dynamic functional regression, Journal of the Royal Statistical Society: Series C (Applied Statistics), 10.1111/rssc.12376, 69, 1, (25-46), (2019).
- Michael J. Price, Cindy L. Yu, David A. Hennessy, Xiaodong Du, Are actuarial crop insurance rates fair?: an analysis using a penalized bivariate B‐spline method, Journal of the Royal Statistical Society: Series C (Applied Statistics), 10.1111/rssc.12363, 68, 5, (1207-1232), (2019).
- Raymond K.W. Wong, Xiaoke Zhang, Nonparametric operator-regularized covariance function estimation for functional data, Computational Statistics & Data Analysis, 10.1016/j.csda.2018.05.013, 131, (131-144), (2019).
- Janet Kim, Sam Wilson, Nasrullah A. Undre, Fei Shi, Rita M. Kristy, Jason J. Schwartz, A Novel, Dose-Adjusted Tacrolimus Trough-Concentration Model for Predicting and Estimating Variance After Kidney Transplantation, Drugs in R&D, 10.1007/s40268-019-0271-2, (2019).
- Marta Karas, Jiawei Bai, Marcin Strączkiewicz, Jaroslaw Harezlak, Nancy W. Glynn, Tamara Harris, Vadim Zipunnikov, Ciprian Crainiceanu, Jacek K. Urbanek, Accelerometry Data in Health Research: Challenges and Opportunities, Statistics in Biosciences, 10.1007/s12561-018-9227-2, (2019).
- Arūnas P. Verbyla, Joanne De Faveri, John D. Wilkie, Tom Lewis, Tensor Cubic Smoothing Splines in Designed Experiments Requiring Residual Modelling, Journal of Agricultural, Biological and Environmental Statistics, 10.1007/s13253-018-0334-9, 23, 4, (478-508), (2018).
- Yingxing Li, Chen Huang, Wolfgang K. Härdle, Spatial functional principal component analysis with applications to brain image data, Journal of Multivariate Analysis, 10.1016/j.jmva.2018.11.004, (2018).
- Jaroslaw Harezlak, David Ruppert, Matt P. Wand, Jaroslaw Harezlak, David Ruppert, Matt P. Wand, Bivariate Function Extensions, Semiparametric Regression with R, 10.1007/978-1-4939-8853-2_5, (173-220), (2018).
- Jian Kang, Brian J Reich, Ana-Maria Staicu, Scalar-on-image regression via the soft-thresholded Gaussian process, Biometrika, 10.1093/biomet/asx075, 105, 1, (165-184), (2018).
- Lu-Hung Chen, Ci-Ren Jiang, Sensible functional linear discriminant analysis, Computational Statistics & Data Analysis, 10.1016/j.csda.2018.04.005, 126, (39-52), (2018).
- Xiaoke Zhang, Jane-Ling Wang, Optimal weighting schemes for longitudinal and functional data, Statistics & Probability Letters, 10.1016/j.spl.2018.03.007, 138, (165-170), (2018).
- Luo Xiao, Asymptotics of bivariate penalised splines, Journal of Nonparametric Statistics, 10.1080/10485252.2018.1563295, (1-26), (2018).
- Hao Yan, Kamran Paynabar, Massimo Pacella, Structured Point Cloud Data Analysis Via Regularized Tensor Regression for Process Modeling and Optimization, Technometrics, 10.1080/00401706.2018.1529628, (1-19), (2018).
- So Young Park, Ana-Maria Staicu, Luo Xiao, Ciprian M Crainiceanu, Simple fixed-effects inference for complex functional models, Biostatistics, 10.1093/biostatistics/kxx026, 19, 2, (137-152), (2017).
- Matthew Thorpe, Adam M. Johansen, Pointwise convergence in probability of general smoothing splines, Annals of the Institute of Statistical Mathematics, 10.1007/s10463-017-0609-x, 70, 4, (717-744), (2017).
- Luo Xiao, Cai Li, William Checkley, Ciprian Crainiceanu, Fast covariance estimation for sparse functional data, Statistics and Computing, 10.1007/s11222-017-9744-8, 28, 3, (511-522), (2017).
- Hao Yan, Kamran Paynabar, Jianjun Shi, Real-Time Monitoring of High-Dimensional Functional Data Streams via Spatio-Temporal Smooth Sparse Decomposition, Technometrics, 10.1080/00401706.2017.1346522, 60, 2, (181-197), (2017).
- Seyed Nourollah Mousavi, Helle Sørensen, Multinomial functional regression with wavelets and LASSO penalization, Econometrics and Statistics, 10.1016/j.ecosta.2016.09.005, 1, (150-166), (2017).
- Yingxing Li, Chen Huang, Wolfgang K. HHrdle, Spatial Functional Principal Component Analysis with Applications to Brain Image Data, SSRN Electronic Journal, 10.2139/ssrn.3085853, (2017).
- Hao Yan, Kamran Paynabar, Jianjun Shi, Anomaly Detection in Images With Smooth Background via Smooth-Sparse Decomposition, Technometrics, 10.1080/00401706.2015.1102764, 59, 1, (102-114), (2017).
- Takuma Yoshida, Nonlinear surface regression with dimension reduction method, AStA Advances in Statistical Analysis, 10.1007/s10182-016-0271-2, 101, 1, (29-50), (2016).
- Pavel Lyubin, Eugeny Shchetinin, Fast Two-Dimensional Smoothing with Discrete Cosine Transform, Distributed Computer and Communication Networks, 10.1007/978-3-319-51917-3_55, (646-656), (2016).
- Lei Huang, Philip T. Reiss, Luo Xiao, Vadim Zipunnikov, Martin A. Lindquist, Ciprian M. Crainiceanu, Two-way principal component analysis for matrix-variate data, with an application to functional magnetic resonance imaging data, Biostatistics, 10.1093/biostatistics/kxw040, (kxw040), (2016).
- Ping Ma, Jianhua Z. Huang, Nan Zhang, Efficient computation of smoothing splines via adaptive basis sampling, Biometrika, 10.1093/biomet/asv009, 102, 3, (631-645), (2015).
- M. G. Belyaev, Anisotropic smoothing splines in problems with factorial design of experiments, Doklady Mathematics, 10.1134/S1064562415020258, 91, 2, (250-253), (2015).
- Enno Mammen, María Dolores Martínez Miranda, Jens Perch Nielsen, In-sample forecasting applied to reserving and mesothelioma mortality, Insurance: Mathematics and Economics, 10.1016/j.insmatheco.2014.12.001, 61, (76-86), (2015).
- Andreas Fuest, Stefan Mittnik, Modeling Liquidity Impact on Volatility: A GARCH-FunXL Approach, SSRN Electronic Journal, 10.2139/ssrn.3038947, (2015).
- Luo Xiao, Vadim Zipunnikov, David Ruppert, Ciprian Crainiceanu, Fast covariance estimation for high-dimensional functional data, Statistics and Computing, 10.1007/s11222-014-9485-x, 26, 1-2, (409-421), (2014).
- L. Xiao, L. Huang, J. A. Schrack, L. Ferrucci, V. Zipunnikov, C. M. Crainiceanu, Quantifying the lifetime circadian rhythm of physical activity: a covariate-dependent functional approach, Biostatistics, 10.1093/biostatistics/kxu045, 16, 2, (352-367), (2014).
- Takuma Yoshida, Direct Determination of Smoothing Parameter for Penalized Spline Regression, Journal of Probability and Statistics, 10.1155/2014/203469, 2014, (1-11), (2014).




