Estimation of Hüsler–Reiss distributions and Brown–Resnick processes
Summary
Estimation of extreme value parameters from observations in the max‐domain of attraction of a multivariate max‐stable distribution commonly uses aggregated data such as block maxima. Multivariate peaks‐over‐threshold methods, in contrast, exploit additional information from the non‐aggregated ‘large’ observations. We introduce an approach based on peaks over thresholds that provides several new estimators for processes η in the max‐domain of attraction of the frequently used Hüsler–Reiss model and its spatial extension: Brown–Resnick processes. The method relies on increments η(·)−η(t0) conditional on η(t0) exceeding a high threshold, where t0 is a fixed location. When the marginals are standardized to the Gumbel distribution, these increments asymptotically form a Gaussian process resulting in computationally simple estimates of the Hüsler–Reiss parameter matrix and particularly enables parametric inference for Brown–Resnick processes based on (high dimensional) multivariate densities. This is a major advantage over composite likelihood methods that are commonly used in spatial extreme value statistics since they rely only on bivariate densities. A simulation study compares the performance of the new estimators with other commonly used methods. As an application, we fit a non‐isotropic Brown–Resnick process to the extremes of 12‐year data of daily wind speed measurements.
Citing Literature
Number of times cited according to CrossRef: 36
- Sebastian Engelke, Adrien S. Hitz, Graphical models for extremes, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 10.1111/rssb.12355, 82, 4, (871-932), (2020).
- Raphaël Huser, Editorial: EVA 2019 data competition on spatio-temporal prediction of Red Sea surface temperature extremes, Extremes, 10.1007/s10687-019-00369-9, (2020).
- F. Palacios-Rodríguez, G. Toulemonde, J. Carreau, T. Opitz, Generalized Pareto processes for simulating space-time extreme events: an application to precipitation reanalyses, Stochastic Environmental Research and Risk Assessment, 10.1007/s00477-020-01895-w, (2020).
- R. P. Towe, J. A. Tawn, R. Lamb, C. G. Sherlock, Model‐based inference of conditional extreme value distributions with hydrological applications, Environmetrics, 10.1002/env.2575, 30, 8, (2019).
- Sven Buhl, Claudia Klüppelberg, Generalised least squares estimation of regularly varying space-time processes based on flexible observation schemes, Extremes, 10.1007/s10687-018-0340-x, (2019).
- Samuel A. Morris, Brian J. Reich, Emeric Thibaud, Exploration and Inference in Spatial Extremes Using Empirical Basis Functions, Journal of Agricultural, Biological and Environmental Statistics, 10.1007/s13253-019-00359-1, (2019).
- Daniela Castro-Camilo, Raphaël Huser, Local Likelihood Estimation of Complex Tail Dependence Structures, Applied to U.S. Precipitation Extremes, Journal of the American Statistical Association, 10.1080/01621459.2019.1647842, (1-29), (2019).
- Raphaël Huser, Jennifer L. Wadsworth, Modeling Spatial Processes with Unknown Extremal Dependence Class, Journal of the American Statistical Association, 10.1080/01621459.2017.1411813, 114, 525, (434-444), (2018).
- Jonathan Tawn, Rob Shooter, Ross Towe, Rob Lamb, Modelling spatial extreme events with environmental applications, Spatial Statistics, 10.1016/j.spasta.2018.04.007, 28, (39-58), (2018).
- Marco Oesting, Kirstin Strokorb, Efficient simulation of Brown‒Resnick processes based on variance reduction of Gaussian processes, Advances in Applied Probability, 10.1017/apr.2018.54, 50, 4, (1155-1175), (2018).
- Marco Oesting, Equivalent representations of max-stable processes via ℓ p -norms , Journal of Applied Probability, 10.1017/jpr.2018.5, 55, 1, (54-68), (2018).
- Phuong Dong Le, Anthony C. Davison, Sebastian Engelke, Michael Leonard, Seth Westra, Dependence properties of spatial rainfall extremes and areal reduction factors, Journal of Hydrology, 10.1016/j.jhydrol.2018.08.061, 565, (711-719), (2018).
- Clément Dombry, Mathieu Ribatet, Stilian Stoev, Probabilities of Concurrent Extremes, Journal of the American Statistical Association, 10.1080/01621459.2017.1356318, 113, 524, (1565-1582), (2018).
- Xing Ju Lee, Markus Hainy, James P. McKeone, Christopher C. Drovandi, Anthony N. Pettitt, ABC model selection for spatial extremes models applied to South Australian maximum temperature data, Computational Statistics & Data Analysis, 10.1016/j.csda.2018.06.019, 128, (128-144), (2018).
- R de Fondeville, A C Davison, High-dimensional peaks-over-threshold inference, Biometrika, 10.1093/biomet/asy026, (2018).
- Sebastian Engelke, Raphaël De Fondeville, Marco Oesting, Extremal behaviour of aggregated data with an application to downscaling, Biometrika, 10.1093/biomet/asy052, (2018).
- Léo R. Belzile, Johanna G. Nešlehová, Extremal attractors of Liouville copulas, Journal of Multivariate Analysis, 10.1016/j.jmva.2017.05.008, 160, (68-92), (2017).
- Raphaël Huser, Thomas Opitz, Emeric Thibaud, Bridging asymptotic independence and dependence in spatial extremes using Gaussian scale mixtures, Spatial Statistics, 10.1016/j.spasta.2017.06.004, 21, (166-186), (2017).
- Ulf-Rainer Fiebig, Kirstin Strokorb, Martin Schlather, The realization problem for tail correlation functions, Extremes, 10.1007/s10687-016-0250-8, 20, 1, (121-168), (2016).
- Marco Oesting, Martin Schlather, Petra Friederichs, Statistical post-processing of forecasts for extremes using bivariate brown-resnick processes with an application to wind gusts, Extremes, 10.1007/s10687-016-0277-x, 20, 2, (309-332), (2016).
- Adrien Hitz, Robin Evans, One-component regular variation and graphical modeling of extremes, Journal of Applied Probability, 10.1017/jpr.2016.37, 53, 3, (733-746), (2016).
- Enkelejd Hashorva, Chengxiu Ling, Maxima of skew elliptical triangular arrays, Communications in Statistics - Theory and Methods, 10.1080/03610926.2014.906613, 45, 12, (3692-3705), (2016).
- Clément Dombry, Sebastian Engelke, Marco Oesting, Exact simulation of max-stable processes, Biometrika, 10.1093/biomet/asw008, 103, 2, (303-317), (2016).
- Raphaël Huser, Marc G. Genton, Non-Stationary Dependence Structures for Spatial Extremes, Journal of Agricultural, Biological, and Environmental Statistics, 10.1007/s13253-016-0247-4, 21, 3, (470-491), (2016).
- Jean-Noel Bacro, Carlo Gaetan, Gwladys Toulemonde, A flexible dependence model for spatial extremes, Journal of Statistical Planning and Inference, 10.1016/j.jspi.2015.12.002, 172, (36-52), (2016).
- Sven Buhl, Claudia Klüppelberg, Anisotropic Brown-Resnick space-time processes: estimation and model assessment, Extremes, 10.1007/s10687-016-0257-1, 19, 4, (627-660), (2016).
- Thomas Opitz, Modeling asymptotically independent spatial extremes based on Laplace random fields, Spatial Statistics, 10.1016/j.spasta.2016.01.001, 16, (1-18), (2016).
- Ioannis Papastathopoulos, Jonathan A. Tawn, Conditioned limit laws for inverted max-stable processes, Journal of Multivariate Analysis, 10.1016/j.jmva.2016.06.001, 150, (214-228), (2016).
- John H. J. Einmahl, Anna Kiriliouk, Andrea Krajina, Johan Segers, An M‐estimator of spatial tail dependence, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 10.1111/rssb.12114, 78, 1, (275-298), (2015).
- Sebastian Engelke, Zakhar Kabluchko, A characterization of the normal distribution using stationary max-stable processes, Extremes, 10.1007/s10687-015-0235-z, 19, 1, (1-6), (2015).
- Emeric Thibaud, Thomas Opitz, Efficient inference and simulation for elliptical Pareto processes, Biometrika, 10.1093/biomet/asv045, 102, 4, (855-870), (2015).
- A.C. Davison, R. Huser, Statistics of Extremes, Annual Review of Statistics and Its Application, 10.1146/annurev-statistics-010814-020133, 2, 1, (203-235), (2015).
- Sebastian Engelke, Zakhar Kabluchko, Max-stable processes and stationary systems of Lévy particles, Stochastic Processes and their Applications, 10.1016/j.spa.2015.07.001, 125, 11, (4272-4299), (2015).
- Boris Beranger, Simone Padoan, Dipak Dey, Jun Yan, Extreme Dependence Models, Extreme Value Modeling and Risk Analysis, 10.1201/b19721, (325-352), (2015).
- Enkelejd Hashorva, Zuoxiang Peng, Zhichao Weng, Higher-order expansions of distributions of maxima in a Hüsler-Reiss model, Methodology and Computing in Applied Probability, 10.1007/s11009-014-9407-6, 18, 1, (181-196), (2014).
- John H. J. Einmahl, Anna Kiriliouk, Andrea Krajina, Johan Segers, An M-Estimator of Spatial Tail Dependence, SSRN Electronic Journal, 10.2139/ssrn.2405848, (2014).




