Bayesian inference for palaeoclimate with time uncertainty and stochastic volatility
Summary
We propose and fit a Bayesian model to infer palaeoclimate over several thousand years. The data that we use arise as ancient pollen counts taken from sediment cores together with radiocarbon dates which provide (uncertain) ages. When combined with a modern pollen–climate data set, we can calibrate ancient pollen into ancient climate. We use a normal–inverse Gaussian process prior to model the stochastic volatility of palaeoclimate over time, and we present a novel modularized Markov chain Monte Chain algorithm to enable fast computation. We illustrate our approach with a case‐study from Sluggan Moss, Northern Ireland, and provide an R package, Bclim, for use at other sites.
Citing Literature
Number of times cited according to CrossRef: 9
- Armand Hernández, Guiomar Sánchez-López, Sergi Pla-Rabes, Laia Comas-Bru, Andrew Parnell, Niamh Cahill, Adelina Geyer, Ricardo M. Trigo, Santiago Giralt, A 2,000-year Bayesian NAO reconstruction from the Iberian Peninsula, Scientific Reports, 10.1038/s41598-020-71372-5, 10, 1, (2020).
- Armand Hernández, Celia Martin-Puertas, Paola Moffa-Sánchez, Eduardo Moreno-Chamarro, Pablo Ortega, Simon Blockley, Kim M. Cobb, Laia Comas-Bru, Santiago Giralt, Hugues Goosse, Jürg Luterbacher, Belen Martrat, Raimund Muscheler, Andrew Parnell, Sergi Pla-Rabes, Jesper Sjolte, Adam A. Scaife, Didier Swingedouw, Erika Wise, Guobao Xu, Modes of climate variability: Synthesis and review of proxy-based reconstructions through the Holocene, Earth-Science Reviews, 10.1016/j.earscirev.2020.103286, (103286), (2020).
- Manuel Chevalier, Basil A.S. Davis, Oliver Heiri, Heikki Seppä, Brian M. Chase, Konrad Gajewski, Terri Lacourse, Richard J. Telford, Walter Finsinger, Joël Guiot, Norbert Kühl, S. Yoshi Maezumi, John R. Tipton, Vachel A. Carter, Thomas Brussel, Leanne N. Phelps, Andria Dawson, Marco Zanon, Francesca Vallé, Connor Nolan, Achille Mauri, Anne de Vernal, Kenji Izumi, Lasse Holmström, Jeremiah Marsicek, Simon Goring, Philipp S. Sommer, Michelle Chaput, Dmitry Kupriyanov, Pollen-based climate reconstruction techniques for late Quaternary studies, Earth-Science Reviews, 10.1016/j.earscirev.2020.103384, (103384), (2020).
- Nils Weitzel, Andreas Hense, Christian Ohlwein, Combining a pollen and macrofossil synthesis with climate simulations for spatial reconstructions of European climate using Bayesian filtering, Climate of the Past, 10.5194/cp-15-1275-2019, 15, 4, (1275-1301), (2019).
- Philip B. Holden, H. John B. Birks, Stephen J. Brooks, Mark B. Bush, Grace M. Hwang, Frazer Matthews-Bird, Bryan G. Valencia, Robert van Woesik, BUMPER v1.0: a Bayesian user-friendly model for palaeo-environmental reconstruction, Geoscientific Model Development, 10.5194/gmd-10-483-2017, 10, 1, (483-498), (2017).
- Andrew C. Parnell, John Haslett, James Sweeney, Thinh K. Doan, Judy R.M. Allen, Brian Huntley, Joint palaeoclimate reconstruction from pollen data via forward models and climate histories, Quaternary Science Reviews, 10.1016/j.quascirev.2016.09.007, 151, (111-126), (2016).
- Niamh Cahill, Andrew C. Kemp, Benjamin P. Horton, Andrew C. Parnell, A Bayesian hierarchical model for reconstructing relative sea level: from raw data to rates of change, Climate of the Past, 10.5194/cp-12-525-2016, 12, 2, (525-542), (2016).
- T. K. Doan, J. Haslett, A. C. Parnell, Joint inference of misaligned irregular time series with application to Greenland ice core data, Advances in Statistical Climatology, Meteorology and Oceanography, 10.5194/ascmo-1-15-2015, 1, 1, (15-27), (2015).
- N. Cahill, A. C. Kemp, B. P. Horton, A. C. Parnell, A Bayesian hierarchical model for reconstructing relative sea level: from raw data to rates of change, Climate of the Past Discussions, 10.5194/cpd-11-4851-2015, 11, 5, (4851-4893), (2015).




