Thermoregulatory traits combine with range shifts to alter the future of montane ant assemblages

Tom R. Bishop 1,2*, Catherine L. Parr 2,3,4, Heloise Gibb 5,6, Berndt J. van Rensburg 7,8, Brigitte Braschler 9,10, Steven L. Chown 11, Stefan H. Foord 12, Kévin Lamy 13, Thinandavha C. Munyai 12,14, Iona Okey 5, Pfarelo G. Tshivhandekano 1, Victoria Werenkraut 15 and Mark P. Robertson 1

1Centre for Invasion Biology, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa; 2Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 3GP, UK; 3School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag X3, Wits 2050, South Africa; 4Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa; 5Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, 3068, Australia; 6The Research Centre for Future Landscapes, La Trobe University, Melbourne, Victoria, 3068; 7School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia; 8Centre for Invasion Biology, Department of Zoology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa; 9Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa; 10Section of Conservation Biology, Department of Environmental Sciences, University of Basel, St. Johannis-Vorstadt 10, 4056 Basel, Switzerland; 11School of Biological Sciences, Monash University, Victoria 3800, Australia; 12Centre for Invasion Biology, Department of Zoology, University of Venda, Thohoyandou 0950, South Africa; 13LACy,
Running head: Potential range and trait shifts in ants

Keywords: ants, abundance, climate change, range shifts, thermoregulation, traits

Paper type: Primary research
ABSTRACT

Predicting and understanding the biological response to future climate change is a pressing challenge for humanity. In the 21st century, many species will move into higher latitudes and higher elevations as the climate warms. In addition, the relative abundances of species within local assemblages is likely to change. Both effects have implications for how ecosystems function. Few biodiversity forecasts, however, take account of both shifting ranges and changing abundances. We provide a novel analysis predicting the potential changes to assemblage level relative abundances in the 21st century. We use an established relationship linking ant abundance and their colour and size traits to temperature and UV-B to predict future abundance changes. We also predict future temperature driven range shifts and use these to alter the available species pool for our trait-mediated abundance predictions. We do this across three continents under a low greenhouse gas emissions scenario (RCP2.6) and a business-as-usual scenario (RCP8.5). Under RCP2.6, predicted changes to ant assemblages by 2100 are moderate. On average, species richness will increase by 26%, while species composition and relative abundance structure will be 26% and 30% different, respectively, compared with modern assemblages. Under RCP8.5, however, highland assemblages face almost a tripling of species richness and compositional and relative abundance changes of 66% and 77%. Critically, we predict that future assemblages could be reorganised in terms of which species are common and which are rare: future highland assemblages will not simply comprise upslope shifts of modern lowland assemblages. These forecasts reveal the potential for radical change to montane ant assemblages by the end of the 21st century if temperature increases continue. Our results highlight the importance of incorporating trait-environment relationships into future biodiversity predictions. Looking forward, the major challenge is to understand how ecosystem processes will respond to compositional and relative abundance changes.

INTRODUCTION

Climate change has significant implications for human prosperity and the biodiversity on which it depends (IPCC, 2014; Pecl et al., 2017). As a result, generating predictions of the state of biodiversity following climate change is now a major goal for ecologists and environmental scientists (Urban, 2015). The most frequently reported and predicted changes are large-scale species range shifts. As the climate warms, species move to remain within
their environmental niche. This leads to dramatic shifts of species away from the equator and
the lowlands, and into high latitude and high elevation areas as global temperature regimes
change (Parmesan & Yohe, 2003; Parmesan, 2006; Chen et al., 2011; Poloczanska et al.,
2013; Warren & Chick, 2013). These range shifts can result in increased extinction risk for
individual species (Erasmus et al., 2002; Visser & Both, 2005; Urban, 2015; Pecl et al.,
2017) and could have large consequences for ecosystem functioning and stability as
assemblages of species are reorganised (Walther, 2010).

Changes to species distributions, however, are only one manifestation of a suite of ecological
changes that are expected to result from 21st century climate change. These include
alterations to demography, and to the absolute and relative abundances of individuals within
their geographic ranges (Johnston et al., 2013; Crase et al., 2015; Gaüzère et al., 2015;
Tayleur et al., 2016; Bowler et al., 2017). Understanding and predicting this small-scale
assemblage level response to climate change has been repeatedly highlighted as a key, but
often neglected, component of our ecological forecasting toolbox (Suding et al., 2008;
Walther, 2010; Urban et al., 2016). This matters because an assemblage where a single
species makes up 90% of the individuals, for example, and an assemblage where all species
are represented equally will look and function very differently (Walther, 2010). Indeed,
several studies of ecosystem functioning have shown how changes in the relative abundances
or occurrences of one or more taxa can lead to large changes in the rates and modes of
function delivery (Slade et al., 2007; Manning et al., 2016; Griffiths et al., 2018; Ashton et
al., 2019).

Despite the importance of both niche-based range shifts (i.e. species occurrence) and
assemblage-level abundance changes in determining the future state of biodiversity following
climate change, these two factors are rarely investigated in combination (but see Dullinger et
al., 2012). Many studies use species distribution modelling techniques to project future
species ranges (Guisan & Thuiller, 2005; Colwell et al., 2008; Urban et al., 2016), and a
growing literature is making use of species traits to predict how relative abundance changes
may alter assemblages (Shipley et al., 2006; Frenette-Dussault et al., 2013; D’Amen et al.,
2015). Either large-scale range shifts or abundance-based assemblage changes could lead to
species becoming extinct or newly dominant, but there is little explicit understanding of how
they may interact with each other.
Previously, we found that darker coloured and larger bodied ant species dominate cold environments, such as high elevations and latitudes, while lighter coloured and smaller species tend to dominate in hotter environments (Bishop et al., 2016; Gibb et al., 2018). Darker colours typically enable organisms to heat up faster than if they had light colouration, while larger bodies lose heat more slowly than small bodies (Willmer & Unwin, 1981; Stevenson, 1985; Spicer et al., 2017). This colour trend was reversed in hot environments with high UV-B levels - an effect that we hypothesized was influenced by the role of melanin in defending against harmful UV-B irradiation. The biophysical links between ambient temperature, UV-B, colour and body size that we suspect drive these patterns, however, are unlikely to be specific to ant assemblages. They operate at a range of scales and in a variety of taxa including dragonflies (Zeuss et al., 2014; Pinkert et al., 2017), butterflies (Ellers & Boggs, 2004), beetles (Schweiger & Beierkuhnlein, 2015), birds (Delhey, 2017), plants (Koski & Ashman, 2015) and microorganisms (Cordero et al., 2018).

This trait-environment relationship is important because temperature will increase (IPCC, 2014), while the direction of change in UV-B irradiance will depend on geographic location and emission levels (Bais et al., 2015; Lamy et al., 2018) in the 21st century. Critically, these environmental changes will act through species traits to favour some species over others. Therefore, relative abundances at the local level will change in accordance with the body size and colouration of species. Several studies predict smaller body sizes (Sheridan & Bickford, 2011; Gibb et al., 2018; Tseng et al., 2018) and lighter (Zeuss et al., 2014; Delhey, 2017) or darker (Roulin, 2014) colours for animals as the 21st century progresses.

Here, we combine predictions of potential trait-mediated abundance changes with anticipated range shifts to simulate how montane ant communities will respond to climate change. Ants are recognised as a major functional component of terrestrial ecosystems (Evans et al., 2011; Zelikova et al., 2011; Ewers et al., 2015; Parr et al., 2016; Griffiths et al., 2018). Understanding how their diversity and assemblage structure is likely to change will be key to anticipating how entire ecosystems will be altered in the future. Furthermore, the continental scale of our dataset, and the observation of the trait-environment relationships in other taxa, makes for an important first step in understanding the potential impact of this relationship on future species abundances.

We forecast potential range shifts for our study species by using a simple climate-envelope model (Colwell et al., 2008) based on projections of future climate and adiabatic lapse rates.
(the rate at which temperature declines with elevation). We forecast abundance changes by first predicting future assemblage averages of colour and body size and then using a maximum-entropy based model (Shipley et al., 2006) to estimate the most likely distribution of species relative abundances. We simulate future changes under a reduced greenhouse gas emissions scenario (RCP2.6) and an unmitigated baseline scenario (RCP8.5) to provide an upper and lower estimate of possible biodiversity futures.

Specifically, we assess the potential for species richness and composition of montane ant assemblages to change throughout the 21st century if we base our predictions on trait-based abundance changes, range shifts or a combination of both. We also ask whether the combination of these two processes predicts the formation of non-analogous assemblages, i.e., assemblages for which there is no contemporary equivalent, in terms of species composition or relative abundance structure (Le Roux & McGeoch, 2008; Keith et al., 2009).

METHODS

Observed data

We sampled epigaeic ant assemblages during the austral summer using pitfall traps on 14 elevational transects (108 separate elevational sites) across Africa, Australia and South America. Transects ranged from 0 to 3000 m a.s.l. (Bishop et al., 2016). In Africa and Australia replicate pitfall trapping grids followed the same protocol. In South America, the spatial arrangement, number of traps and size of the traps differed slightly. All traps were placed during the austral summer and were open for 5 days and nights in Africa, and 7 days and nights in the Australia and South America. Further details on trapping materials are found in Appendix S1 and Bishop et al. (2016). For each transect, assemblages were pooled at the elevational band level (bands were separated from each other by 100 to 300 vertical metres) for this analysis. For each species, we recorded body size, as measured by Weber’s length. Weber’s length is defined as the length between the anterodorsal margin of the pronotum and the posterodorsal margin of the propodeum and is a commonly used measure of body size in ants (Brown, 1953). We recorded Weber’s length to the nearest 0.01 mm. We recorded colour as a categorical variable using a predetermined set of colours by a limited number of observers. We converted these colours to HSV (hue, saturation and value) values and retained the v (value, or lightness) as a measure of how light or dark in colour a species
This measure of lightness is bounded by 0 and 1. Values of 0 are dark while values of 1 are light. Both traits were recorded from six specimens per species per elevational transect, where possible. Further details can be found in Bishop et al. (2016) and in Appendix S1.

We calculated assemblage weighted means (AWM) of body size and colour lightness for the ant assemblages using the formula:

\[AWM = \sum_{i=1}^{S} p_i x_i \]

Where \(S \) is the number of species in an assemblage, \(p_i \) is the proportional abundance of each species and \(x_i \) is the trait value (lightness or body size) of each species. The difference between this analysis and that in Bishop et al. (2016) is that here, replicate assemblages within the same elevational band on the same elevational transect are pooled together to form a single assemblage.

We assessed the relationship between each assemblage-weighted trait (colour lightness and body size) and temperature and UV-B irradiance using linear mixed models (LMMs). Current temperature and UV-B data were taken from the climatic surfaces WorldClim 2 (Fick & Hijmans, 2017) and glUV (Beckmann et al., 2014), respectively. We extracted mean temperature and UV-B irradiation for January to March (the austral summer months, when we sampled ants) for each elevational transect and took an average within each elevational band. As temperature and UV-B are correlated, we used the residuals of the relationship as the UV-B variable. We used second order polynomial terms to detect curvature and an interaction between temperature and residual UV-B was included. Assemblage weighted lightness was logit-transformed prior to modelling with a Gaussian distribution. To account for the geographical configuration of our study sites we used a nested random effects structure of transect within mountain range within continent. We centred and scaled all explanatory variables. We used bias corrected Akaike information criterion (AICc) values to compare all possible models. Each of the 108 data points used in these models represents an assemblage of ants from a single elevational band.

We tested our dataset for structural bias in the AWMs by randomly shuffling the traits of each species within a given regional pool and refitting the mixed effects models 2000 times (Hawkins et al., 2017). We used the same explanatory variables as selected by the best fitting original models and extracted a marginal \(R^2 \) \((R^2_m = \text{due to fixed effects only}) \) for both colour
and body size for each randomisation. We compared our original R^2_ms to the randomly
generated R^2_ms. For colour and body size, our original R^2_ms were in the 1st and 0.99th
percentile, respectively (Appendix S2). This means that randomly assigning species names to
trait values could not recreate our observed patterns – implying that there is no problem of
structural bias in this dataset influencing the trait-environment relationship (Hawkins et al.,
2017).

Future data

We use two different climate change scenarios to make future projections of montane ant
biodiversity. We use Representative Concentration Pathway (RCP) 2.6 and RCP8.5. RCP2.6
predicts a mean increase in temperature, relative to preindustrial levels of 1°C (range of 0.3-
1.7°C) by 2100 while RCP8.5 predicts an increase of 3.7°C (range of 2.6-4.8°C IPCC,
2014). If greenhouse gas emissions are in line with the Paris Agreement of 2015, then
RCP2.6 is a likely future climate scenario. If not, and emissions continue on their current
trajectory, the planet faces the future that RCP8.5 describes (Sanford et al., 2014). We
extracted estimates for regional temperature change from the IPCC (2014) for all of our study
sites for RCP2.6 and RCP8.5. UV-B irradiance will also change in the 21st century. We use
predicted estimates of UV-B change under RCP2.6 and RCP8.5 for all of our study sites from
Lamy et al. (2018). As both the IPCC (2014) temperature data and Lamy et al. (2018) UV-B
irradiance data are given in relative or percentage change, we calculate absolute values for
the 21st century based on our observed data from the WorldClim 2 and glUV surfaces.

We generated predictions of future assemblage weighted colour lightness and body size for
all sites by combing the observed LMMs of colour and body size with the time series of
future temperature and UV-B changes. We used the “predict.lme” function in R (Bates et al.,
2014) to predict future AWM colour lightness and body size under future temperature and
UV-B conditions. As a result, predictions of future AWM lightness and body size were
driven by changing temperatures and changing UV-B irradiation levels. Predictions of future
AWMs were made for each year from 2011-2100.

Trait simulation
In the trait simulation, we forecast the state of future ant assemblages based only on changes to relative abundance predicted by the trait-environment relationship. We did not simulate dispersal: species were not permitted to move out of the sites in which we originally observed them. We use a Community Assembly by Trait-based Selection (CATS) model (Shipley et al., 2006; Shipley, 2010; Sonnier et al., 2010). The CATS model predicts the relative abundances of different species given a defined species pool, the traits of those species and the expected average trait value (assemblage weighted mean, AWMs) (Shipley et al., 2006; Laughlin & Laughlin, 2013).

The CATS model uses a series of constraint equations to produce a set of possible vectors of species relative abundances (Shipley, 2010; Laughlin & Laughlin, 2013). First, the model constrains abundances to sum to 1:

\[\sum_{i=1}^{S} p_i = 1 \]

Where \(p_i \) is the predicted abundance of species \(i \) and \(S \) is the number of species in the pool. This constraint equation is always the same.

Second, the model constrains the set of possible relative abundance vectors depending on the predicted AWM:

\[\sum_{i=1}^{S} t_i p_i = T \]

Where \(p_i \) is the predicted abundance of species \(i \), \(t_i \) is the trait value of species \(i \), \(S \) is the number of species in the pool and \(T \) is the AWM. This constraint equation differs across different sites (and in our case, through time) as the supplied AWM (\(T \)) changes. This equation refines the set of possible relative abundance vectors to those that produce the same AWM as that supplied.

The final prediction is made using only one vector from the set. The final vector is that which maximizes the relative entropy function:

\[H(p, q) = - \sum_{i=1}^{S} p_i \ln \left(\frac{p_i}{q_i} \right) \]
Where ln is the natural log, \(p_i \) is the predicted abundance of species \(i \), \(q_i \) is the prior probability of species \(i \) and \(S \) is the number of species in the pool. The solution with the highest entropy is that which minimises the difference between the predicted abundances \((p_i) \) and the prior information \((q_i) \). Under a maximally uninformative prior, where all species have the same probability of selection, the model will choose the most even distribution of species abundances. Under all other cases, the function will choose the vector which deviates the least from the prior information. Further information on the mathematical formulation of the CATS model and its comparison to other trait-based predictive frameworks can be found in Shipley (2010), Shipley et al. (2006) and Laughlin and Laughlin (2013). We use this CATS approach to predict relative abundances of mountain-top ants into the 21st century (further information in Appendix S3).

Before running the simulation, we tested how well CATS could predict the observed relative abundances of ants in all of our assemblages when provided with prior information on which species were present in each elevational band. We calculated \(R^2 \) to measure how well the predicted relative abundances matched the observed. The CATS model was implemented using the “maxent” function in the “FD” package of R (Laliberté & Shipley, 2011).

We ran the CATS model for each elevational band, from each elevational transect, from the observed data year (arbitrarily assigned as 2010) to 2100. In each year, we supplied our predictions of future AWM colour lightness and body size. We assigned species not present in a given elevational band a prior of 0 and those that were present an even probability of selection. This prior means that species richness cannot increase under this simulation. The output from this procedure was a vector of relative abundances for each year of the simulation, for each elevational band, within each mountain transect and for each RCP scenario.

If a species’ predicted relative abundance was less than 0.0001 (one in ten thousand), it was classed as extinct and was removed from the available species pool. Consequently, assemblages in this simulation could lose species but they could not gain them. This threshold of relative abundance was based on the smallest relative abundance recorded from our field observations. Different thresholds around this value make little difference to our results (Appendix S4).
Range Shift Simulation

In the range shift simulation, we forecast the future state of ant assemblages using a simple climate-envelope model. As a result, this simulation predicted future species occurrence only, not relative abundance. There are limited data available on the geographic ranges of the species in our study beyond this dataset itself. As a result, we are unable to incorporate the entire geographical ranges of these species into comprehensive species distribution models. We use the simple method developed by Colwell et al. (2008) to assess potential elevational range shifts using only temperature for transect data. Consequently, we interpret our forecasts as potential changes in elevational range.

We first calculated the elevational distributions for all species in the dataset. We set the distribution of each species to encompass the highest and lowest elevations from which we sampled it. We assume ranges are inclusive and recorded a species as being present at all elevations between the highest and lowest recorded occurrences. We set range limits to extend halfway to the next neighbouring elevational band above and below (Colwell et al., 2008). Second, we calculated empirical adiabatic lapse rates, the rate at which temperature declines with elevation, for each mountain. We estimated the slope of the relationship between temperature and elevation for each mountain using simple linear regression and used this as the adiabatic lapse rate. We simultaneously used WorldClim 2 and data logger estimates of temperature. For the Australian transects and the Mariepskop transect in South Africa we only used WorldClim 2 estimates. Table S5 shows the estimated lapse rates for each transect.

We used the data on species elevational distributions, adiabatic lapse rates and predicted future temperature changes to predict the shifting ranges of the ant species on each transect and, by extension, the shifting assemblage compositions, into the 21st century. Ranges were shifted upslope relative to the observed baseline depending on the predicted temperature increase or decrease for a given year. The rate of this vertical movement was set by the adiabatic lapse rate of each transect. This procedure is identical to that used by Colwell et al. (2008). All species on the same transect move upslope at the same rate. Across the entire dataset, the average upslope shift by 2100 was 145 m for RCP2.6 and 1050 m for RCP8.5. When a species range overlapped with a sampling site at a given time point, it was classed as present.
Combined Simulation

The final simulation combines the trait and range shift simulations. The combined simulation runs in almost the same way as the trait simulation. We predict relative abundance changes based on predicted changes in AWM lightness and body size using CATS. Behind this process, however, is a changing species pool. Whereas the trait simulation was static and did not allow new species to enter a given elevational band, the combined simulation moves species upslope (and downslope) through time according to their predicted range changes. As a result, the available species pool that the CATS model is able to select from changes as the simulation runs. We ran this simulation under RCP2.6 and RCP8.5.

Interpretation

It is not possible to predict accurately patterns of change all the way to 2100 for some lowland assemblages under the range shift and combined simulations because we do not have data on the species that may enter these areas from even lower elevations or lower latitudes. This could cause an artificial lowland biotic attrition in these locations (Colwell et al., 2008). For each year we use the predicted temperature change and the adiabatic lapse rate of each mountain to calculate where the “lower predictive limit” is. We only include data from assemblages that are above this limit in a given year (Appendix S6). This means that we exclude the very lowest assemblages on each mountain, and that there are fewer predictions available in 2100 compared with earlier years. This effect is less severe in RCP2.6 than RCP8.5 due to the smaller temperature change.

For each simulation and climate change scenario, we extract five different metrics from each year in the 21st century and plot these through time. These metrics are: (1) percentage change in species richness, (2) percentage of the original fauna lost, (3) Sørensen’s total compositional dissimilarity, (4) Simpson’s turnover-based dissimilarity and (5) the abundance weighted Bray-Curtis dissimilarity. All measures are relative to the start of the simulation. For example, we calculate dissimilarities as the dissimilarity between a given year and the year 2010 (our observed data), while the species richness metrics are all proportional to the richness values recorded in 2010. We calculate the average and 95% CI across sites for each of these metrics through time separately for RCP2.6 and RCP8.5. For the range shift and combined simulations, the year 2010 is based on our current predictions, rather than current
observations. Our current predictions have slightly elevated species richness (11 ± 0.03 %, mean ± SE) due to the interpolation of species ranges. We compared current predictions to future predictions to avoid artificially inflating the degree of change estimated due to our range interpolation procedure alone.

To detect the formation of non-analogous assemblages in the combined simulation we find the closest modern (year 2010) assemblage, from any elevation, in terms of species composition for each future (year 2100) assemblage. We use Sørensen’s dissimilarity metric to do this. We then calculate the abundance-based dissimilarity between the future assemblages and their closest modern analogue using Bray-Curtis similarity. Large Sørensen’s dissimilarities would indicate that future assemblages have no modern analogue, as this is an occurrence-based metric. Alternatively, a low Sørensen’s dissimilarity but a high Bray-Curtis dissimilarity would indicate that future assemblages have similar species compositions to modern assemblages, but different distributions of relative abundance. Between these pairs of future assemblages and their modern analogues, we also calculate a mean and maximum rank shift, expressed as a percentage of the largest possible shift. To do this we calculate the rank abundance of each species in each of the future-modern analogue pairs. We then calculate the absolute change in ranks between each species and divide either the maximum change or the mean change by the number of species. This is an extension of the mean rank shift metric of Collins et al. (2008).

RESULTS

As expected, we recovered the same trait-environment relationship as in Bishop et al. (2016) after pooling at the elevational band level within a transect - ant assemblages were, on average, darker in colour and larger in worker body size in cold environments (Fig. S7). The CATS model performed well and predicted 75% of the variation in observed relative abundances. This level of accuracy is comparable with previous studies, for example, Frenette-Dussault et al. (2013) reported an accuracy of 40% when using two traits and ~70% when using six traits. We use only two traits here.
Predicted species richness changes varied strongly by simulation type and climate change scenario (Fig. 1). Across all three simulations, assemblages showed larger changes to overall richness and lost more of their original fauna in RCP8.5 compared with RCP2.6. In the trait simulation, species richness declined by 10% in RCP2.6 and by 15% in RCP8.5, averaged across all assemblages by 2100 (Fig. 1a, d). In the range shift simulation, species richness increased by 29% in RCP2.6 and by 193% in RCP8.5, averaged across all assemblages by 2100 (Fig. 1b, e). In addition, 14% of the original fauna was lost in RCP2.6 and 43% in RCP8.5. In the combined simulation, the change in species richness was not as much as in the niche simulation (RCP2.6 = 26%, RCP8.5 = 186%, Fig. 1c) but a larger fraction of the original fauna was lost (RCP2.6 = 20%, RCP8.5 = 47%, Fig. 1f).

Predicted compositional changes also varied strongly by simulation type and climate change scenario (Fig. 2). Again, predicted changes were much greater under RCP8.5 compared with RCP2.6. In the trait simulation, compositional dissimilarity (as measured by Sørensen’s dissimilarity) by 2100 was 0.07 in RCP2.6 and 0.11 in RCP8.5, on average (Fig. 2a). This was entirely due to nested patterns of compositional change as the trait simulation only allows for extinction, not colonisation (as measured by Simpson’s dissimilarity, Fig. 2d). In the range shift simulation, compositional dissimilarity by 2100 was 0.22 under RCP2.6 and 0.64 under RCP8.5 (Fig 2b). In RCP2.6 this overall compositional dissimilarity was almost evenly made up of turnover and nestedness (average turnover by 2100 for RCP2.6 = 0.1, Fig. 2e). For RCP8.5, turnover was a larger component of overall compositional dissimilarity (average turnover by 2100 for RCP8.5 = 0.41, Fig. 2e). In the combined simulation, a similar pattern to the niche simulation was seen for both total compositional dissimilarity (RCP2.6 = 0.27, RCP8.5 = 0.65, Fig. 2c) and turnover dissimilarity (RCP2.6 = 0.12, RCP8.5 = 0.38, Fig. 2f).

Abundance metrics

Predicted abundance weighted dissimilarity is greater for RCP8.5 than for RCP2.6 and shows differences between the trait and combined simulations (Fig. 3). In the trait simulation, abundance dissimilarity is 0.15 by 2100 under RCP2.6 and 0.37 under RCP8.5 (Fig. 3a). In the combined simulation, abundance dissimilarity is 0.33 by 2100 under RCP2.6 and 0.78 under RCP8.5 (Fig. 3b).
Modern-future analogues

While future assemblages tended to have a close modern analogue in terms of species occurrence, this was not true when considering assemblage structure and relative abundances. The average occurrence-weighted Sørensen’s dissimilarity between predicted assemblages in 2100 and their closest modern analogue was 0.08 for RCP2.6 and 0.11 for RCP8.5 (Fig. 4a). The average abundance-weighted Bray-Curtis dissimilarity between these same pairs of future and modern assemblages was 0.36 under RCP2.6 and 0.51 for RCP8.5 (Fig. 4a). In RCP2.6, average mean rank shift was 19% and average maximum rank shifts were 42%. For RCP8.5, the average mean rank shift was 30% and the average maximum was 70%. A maximum rank shift of 100% is the highest possible, whereby the most common species becomes the rarest species, or vice versa.

DISCUSSION

We have forecast the future of mountain ant diversity using a novel combination of trait-mediated abundance predictions and temperature driven range shifts. We find that ant assemblages are likely to change drastically in terms of species richness, composition and abundance structure by 2100. In addition, we predict that while future assemblages will have modern analogues in terms of species occurrence, they will have an entirely different abundance distribution. These changes are likely to have a significant impact on the way these mountain systems function as ants mediate ecosystem processes and interact with many other members of the food web (Gómez & Oliveras, 2003; Zelikova et al., 2011; Parr et al., 2016). Our findings differ strongly, however, between alternative scenarios of climate change. Our predictions of species richness changes are much more optimistic under RCP2.6, which is a likely climate future only if the greenhouse gas emissions targets set at the Paris Climate Agreement of 2015 are met (Sanford et al., 2014).

Biodiversity forecasts are expanding beyond shifting distributions (Pearson & Dawson, 2003) to predict assemblage level information, phylogenetic and functional diversity (Del Toro et al., 2015; Graham et al., 2017), and to incorporate a variety of biotic effects such as species interactions (Araújo & Luoto, 2007) and dispersal abilities (Dullinger et al., 2012). Here, we provide a novel analysis predicting assemblage level relative abundances and potential range shifts from an established trait-environment relationship. The general form of the trait-
environment relationship we use here appears to be a feature of many ectotherm assemblages and populations (Zeuss et al., 2014; Pinkert et al., 2017). The data we use are also relatively more straightforward to collect compared with species interaction coefficients or dispersal abilities, and simpler to assess for completeness compared with data for interaction networks (Vizentin-Bugoni et al., 2016). Directional changes to species relative abundances may also be easier to detect through time compared to species occurrences, because changes in species’ rank abundances are more sensitive to change than occurrences, highlighting the usefulness of long-term monitoring schemes. As a consequence, the approach is a useful additional one for assessing assemblage level changes, which have been highlighted as a key requirement for the ecological forecasting toolbox (Suding et al., 2008; Walther, 2010; Urban et al., 2016).

Central to our forecasts are the different kinds of assemblage level change that each simulation emphasises. Both the trait and range shift simulations are unrealistic in isolation, but provide a minimum estimate of each effect in the absence of the other. The combined simulation predicts a unique set of future assemblages that neither the trait nor the range shift simulation could predict on their own. Under the combined simulation, we predict that future assemblages will support a similar set of species to modern ones from further downslope (similar observations have been made for plants and moths, Vittoz et al., 2008; Chen et al., 2009), but that their abundance structure will be reorganised (Fig. 4). This means that assemblages will not simply move upslope unchanged as the climate warms – they will also face a reorganisation in terms of which species are common and which are rare.

Notably, most work on the formation of non-analogous assemblages focuses on novel species co-occurrences (Keith et al., 2009; Graham et al., 2017). Our forecasts, however, show that changes to abundance may be an underappreciated aspect of non-analogous assemblage formation and highlight the importance of considering both species occurrence and relative abundance (Walther, 2010; Simpson et al., 2011). The way in which these changes play out in reality, however, will depend on the form of the dispersal kernels across the species in the assemblages involved (Urban et al., 2012; Alexander et al., 2017) and the reorganisation of biotic interactions. At this stage, however, there are no independent data (Early & Keith, 2019) to assess inter- and intraspecific interactions among ants at these scales and inferring this information is fraught with difficulty (Stuble et al., 2017)
All the changes we predict are likely to have a significant impact on ecosystem functioning and energy flow in mountain environments, especially given the numerical and functional dominance of ants in many terrestrial ecosystems (Griffiths et al., 2018). We predict that future high elevation assemblages will likely contain more species than they do now. Given the positive relationship between ant diversity and the rate of ecosystem functioning (Fayle et al., 2011; Griffiths et al., 2018) it may be that, as more species move up-slope, ant mediated functions such as scavenging, waste removal and seed dispersal will increase. This picture is complicated, however, by our prediction of large changes to the relative abundances of species based on their traits. By 2100, the assemblage weighted mean body size in our dataset will be 11.5% smaller under RCP8.5, on average, which suggests that the species responsible for performing ecosystem functions will also be smaller – the consequences of this for functioning are hard to predict. While we are certain that the role of ants in mountain ecosystems will change substantially in the future, we can only speculate on the ways in which this will happen.

Although our forecast for the future under RCP8.5 predicts large changes to ant biodiversity in mountain regions, our predictions under RCP2.6 are much more optimistic. Under this scenario of climate change, we expect species ranges to move up-slope by 145 m and, correspondingly, our estimates of species loss, species gain and compositional and abundance change are much reduced in comparison to RCP8.5. What seems to be shared between the two scenarios, however, is the formation of abundance-based non-analogue assemblages. In RCP2.6, the degree of rank abundance reorganisation is smaller in comparison to RCP8.5, but remains substantial (Fig. 4). In sum, we support the view that reducing greenhouse gas emissions and limiting temperature rises to below 2°C by 2100 is necessary for positive outcomes for global conservation and ecosystem integrity (Warren et al., 2018).

Our simulations of range shifts assume a “full dispersal scenario” (Colwell et al., 2008; Fitzpatrick et al., 2011). Species ranges move up-slope as the climate warms and there are no lags or limits in dispersal capacity. This is probably a reasonable assumption to make for ants. The geographic distances between different elevations in our dataset are relatively small, ants are renowned dispersers (e.g. Wilson, 1961) and winged reproductive individuals may be aided by updrafts in montane environments. On the other hand, it has been argued that the social and modular nature of ant colonies confers a high degree of persistence in the face of environmental perturbations and extremes (Andersen, 2008). This kind of non-equilibrial process may limit the available space for newly arrived dispersers to establish.
This establishment limitation is especially true when considering competitive interactions between dominant and subdominant ant species, the outcome of which can also be influenced by temperature (Parr, 2008; Roeder et al., 2018). These effects would disrupt the “full dispersal scenario” that we have assumed. Determining in more detail which factors limit or promote species distributions, dispersal ability and establishment capacities will greatly increase our ability to predict and understand future change (Fitzpatrick et al., 2011; Alexander et al., 2017).

In addition to processes such as competition and establishment limitation disrupting our simulation assumptions, vegetation-mediated changes to microclimate and soil properties may have a large influence on ant assemblages in the 21st century (Ríos-Casanova et al., 2006; Munyai & Boord, 2012). The real world is more complicated than we can currently simulate and, because of this, we interpret our results as reflecting the maximum potential of range shifts and thermoregulatory traits to influence assemblage-level change.

In particular, our range shift simulation is relatively simple. Due to the lack of information available on full species ranges, dispersal abilities and biotic interactions, we were restricted in the modelling tools available that could predict elevational range shifts. Consequently, we used the method developed by Colwell et al. (2008) to minimise the assumptions we made about the biology and ecology of the ant species involved. The caveats are that our data may be underestimating true species ranges; that microclimatic variation removes the necessity for species to migrate upslope; and that the influence of biotic interactions between newly dominant or co-occurring species are ignored. Collecting the necessary data to account for these effects is an ongoing challenge (Early & Keith, 2019), particular for invertebrates.

In summary, we predict large changes to mountain ant assemblages due to temperature driven range shifts and trait-mediated abundance change. Many more species will be present in high elevation sites in the future, as has been found for plants (Steinbauer et al., 2018), and their composition and abundance structure will change substantially. These changes will be much larger under RCP8.5 than RCP2.6, but both scenarios predict a future where highland assemblages are compositionally analogous to lowland ones but with a reorganised abundance structure. Going forward, it will be critical to understand how changes in relative abundance will contribute to cascading effects on the wider food web and ecosystem functioning.
ACKNOWLEDGEMENTS

We thank the DST-NRF Centre of Excellence for Invasion Biology, the University of Pretoria, Chantal Ferreira, the Mazda Wildlife Fund, Ezemvelo KZN Wildlife and the Lesotho Ministry of Tourism, Environment and Culture for their various roles in supporting the Maloti-Drakensberg, Soutpansberg and Cederberg transects. The Mariepskop transect was financially supported by the NRF and 19 Helicopter Squadron at Hoedspruit provided logistical support. The Australian transects were supported by Australian Research Council Discovery Project DP120100781, Blair Grossman and Manoli Photakis. A NERC studentship, the University of Pretoria Vice-Chancellor’s Research Fellowship and a Leverhulme Trust Early Career Fellowship supported T.R.B.

REFERENCES

TABLES

No tables.

FIGURE CAPTIONS

Figure 1. Plots showing predicted changes in species richness (expressed as a percentage
change, a-c) and the original fauna (expressed as a percentage of the original fauna lost, d-f)
for trait, range shift and combined simulations. Blue lines refer to predictions made for
RCP2.6, red lines are for RCP8.5. Lines are loess smoothed averages taken from across all
assemblages and mountain transects. Coloured polygons represent 95% confidence intervals.

Figure 2. Plots showing predicted changes in total compositional dissimilarity (Sørensen’s
dissimilarity, a-c) and turnover dissimilarity (Simpson’s dissimilarity, d-f) for trait, range
shift and combined simulations. Blue lines refer to predictions made for RCP2.6, red lines
are for RCP8.5. Lines are loess smoothed averages taken from across all assemblages and
mountain transects. Coloured polygons represent 95% confidence intervals.

Figure 3. Plots showing predicted changes in abundance weighted dissimilarity (Bray-
Curtis) for trait and combined simulations. Blue lines refer to predictions made for RCP2.6,
red lines are for RCP8.5. Lines are loess smoothed averages taken from across all
assemblages and mountain transects. Coloured polygons represent 95% confidence intervals.

No plot is presented for the niche simulation because it uses only occurrence data.

Figure 4. Plots showing the relationship between future assemblages in the combined
simulation and their closest modern analogues. In (a), dissimilarity between future
assemblages and their closest modern analogues is given. Modern analogues are those with
the smallest occurrence-weighted dissimilarity (“Occ.”, Sørensen’s dissimilarity).
Abundance-weighted dissimilarity ("Abund.", Bray-Curtis) between the future and closest modern analogues is also given. Panels (b) and (c) show the average and maximum change in rank abundance between future and modern pairs, expressed as a percentage of the largest possible shift in rank. Blue boxes are for RCP2.6, red boxes are for RCP8.5.