Biogeography of Mutualistic Fungi Cultivated by Leafcutter Ants

Ulrich G. Mueller1,*, Heather D. Ishak1, Sofia M. Bruschi1,2, Chad C. Smith1, Jacob J. Herman1, Scott E. Solomon1,2,3, Alexander S. Mikheyev1,4, Christian Rabeling1,5, Jarrod J. Scott1, Michael Cooper1, Andre Rodrigues2, Adriana Ortiz6, Carlos Roberto F. Brandão7, John E. Lattke8, Fernando C. Pagnocca2, Stephen A. Rehner2, Ted. R. Schultz10, Heraldo L. Vasconcelos11, Rachelle M.M. Adams12, Martin Bollazzi13, Rebecca M. Clark14, Anna G. Himler1,15, John S. LaPolla10,16, Inara R. Leal17, Robert A. Johnson5, Flavio Roces18, Jeffrey Sosa-Calvo5, Rainer Wirth19, and Maurício Bacci Jr2,*

1 Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA; 2 Centro de Estudos de Insectos Sociais, Universidade Estadual Paulista, 13506-900, Rio Claro, São Paulo, Brazil; 3 Department of Ecology & Evolutionary Biology, Rice University, Houston, TX 77005, USA; 4 Okinawa Institute of Science & Technology, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-2234, Japan; 5 School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; 6 Universidad Nacional de Colombia, Calle 59 A # 63-20, Medellin, Colombia; 7 Museu de Zoologia, Universidade de São Paulo, São Paulo, Brazil; 8 Departamento de Zoologia, Universidade Federal do Paraná, Caixa Postal 19020, Brazil; 9 Mycology and Nematology Genomic Diversity and Biology Laboratory, Beltsville, MD, USA 20705, USA; 10 Department of Entomology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA;
Instituto de Biologia, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, 38400-902, Brazil;
Department of Evolution, Ecology & Organismal Biology, Museum of Biological Diversity, 1315 Kinnear Road, Columbus, OH 43212, USA;
Section of Entomology, Universidad de la República, 11200 Montevideo, Uruguay;
Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA;
Department of Biology, College of Idaho, Caldwell, ID 83605, USA;
Department of Biological Sciences, Towson University, Towson, Maryland 21252, USA;
Departamento de Botánica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil;
Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, 97074 Würzburg, Germany;
Department of Plant Ecology and Systematics, University of Kaiserslautern, 67653 Kaiserslautern, Germany;
* to whom correspondence should be addressed:
Ulrich G. Mueller, umueller@austin.utexas.edu; Maurício Bacci Jr., mbacci@rc.unesp.br

Correspondence to: Ulrich Mueller, Integrative Biology, Patterson Labs, 1 University Station #C0930, University of Texas at Austin, Austin, TX 78712, USA.
Fax: USA-512-471-3878. Phone: USA-512-983-6337. E-mail: umueller@austin.utexas.edu

Running title: Biogeography of leafcutter ant fungi

Abstract

Leafcutter ants propagate co-evolving fungi for food. The nearly 50 species of leafcutter ants (Atta, Acromyrmex) range from Argentina to the USA, with the greatest species diversity in southern South America. We elucidate the biogeography of fungi cultivated by leafcutter ants using DNA-sequence and microsatellite-marker analyses of 474 cultivars collected across the leafcutter range. Fungal cultivars belong to two clades (Clade-A, Clade-B). The dominant and widespread Clade-A cultivars form three genotype-clusters, with their relative prevalence corresponding to southern South America, northern South America, and Central & North America. Admixture between Clade-A populations support genetic exchange within a single species, Leucocoprinus gongylophorus. Some leafcutter species that cut grass as fungicultural substrate are specialized to cultivate Clade-B fungi, whereas leafcutters preferring dicot plants appear specialized on Clade-A fungi. Cultivar sharing between sympatric leafcutter species occurs frequently, such that cultivars of Atta are not distinct from those of Acromyrmex. Leafcutters specialized on Clade-B fungi occur only in South America. Diversity of Clade-A fungi is greatest in South America, but minimal in Central & North America. Maximum cultivar diversity in South America is predicted by
the Kusnezov-Fowler hypothesis that leafcutter ants originated in subtropical South America and only
dicot-specialized leafcutter ants migrated out of South America, but the cultivar diversity becomes also
compatible with a recently-proposed hypothesis of a Central American origin by postulating that
leafcutter ants acquired novel cultivars many times from other non-leafcutter fungus-growing ants during
their migrations from Central America across South America. We evaluate these biogeographic
hypotheses in light of estimated dates for the origins of leafcutter ants and their cultivars.

Key Words: Leucoagaricus gongylophorus, Leucocoprinus gongylophorus, Leucoagaricus weberi,
Attamyces bromatificus, insect-fungus mutualism, symbiosis

Introduction
Biogeographic distributions provide clues about evolutionary processes, such as ancient dispersal and
vicariance events that shaped macroevolutionary patterns, or adaptation and gene flow influencing
microevolutionary processes (Wallace 1876; Brown & Lomolino 1998; Avise 2009). In mutualistic
associations between two partners, similarities or differences in biogeographic distributions between co-
dependent partners can facilitate inference of such evolutionary processes (Thompson 2005; Alvarez et al.
partners require cautious interpretation, however, particularly regarding congruence and incongruence of
patterns, because evolutionary forces and demographies can differ markedly between partners (Herre et
al. 1999; Alvarez et al. 2010; Espíndola et al. 2014; Tian et al. 2015; Chomicki et al. 2017). For
example, population sizes, migration rates, mutation rates, and generation times can differ by orders of
magnitude between a host and a symbiotic partner (Lutzoni & Pagel 1997; Moran & Wernegreen 2000;
Woolfit & Bromham 2003; Degnan et al. 2004), and dispersal barriers restricting gene flow for one
partner (e.g., a pollinating bee) may not impede gene flow for the other partner (e.g., the pollinated plant).
Such differences in evolutionary forces are particularly pronounced in mutualistic associations between
macro-organisms and fast-evolving microbial symbionts, or microbial symbionts that do not co-migrate
with a host, disperse independently of the host, and that are acquired by hosts from local microbial
populations (e.g., many plant-endophyte, mycorrhizal plant-fungus, lichen algal-fungus, or host-microbe
gut mutualisms) (Wornik & Grube 2010; Dal Grande et al. 2012; Silverstein et al. 2012; Kaltenpoth et al.
2014; Weiblen & Treiber 2015; Palmer et al. 2015).

In many mutualistic host-microbe associations, a greater dispersal ability of the microbial partners results
in predictable differences in population-genetic and biogeographic patterns between hosts and microbial
symbionts, for example lesser genetic differentiation between populations for the symbiont compared to
the host (Nobre et al. 2011; Six 2012; Mueller et al. 2011a; Kellner et al. 2013; Hulcr & Stelinski 2017),
or greater potential for a single symbiont lineage to interact with different allopatric host species
(Thompson 2005; Mueller & Gerardo 2002; Weiblen & Treiber 2015; Palmer et al. 2015). In contrast,
when symbiont dispersal is limited, populations of symbionts are predicted to differentiate across space,
as for example in the symbiotic ectomycorrhizal fungus Rhizopogon where limited dispersal by vectoring
mammals maintains population-genetic structure between proximate islands (Grubisha et al. 2007). As a
general rule, however, widely dispersing symbionts are thought to be associated with a greater diversity
of hosts than symbionts with limited dispersal (Herre et al. 1999; Roy et al. 2008). Biogeographic
analyses of such microbial symbionts are often complicated by insufficient knowledge of species
boundaries of microbial symbionts, requiring high-resolution genetic analyses to differentiate species- and
population-boundaries (e.g., Douhan et al. 2011; Gazis et al. 2011; Lankau & Keymer 2016).

The mutualistic association between leafcutter ants (genera Atta and Acromyrmex) and their cultivated
fungi is one example where dozens of ant-host species are thought to associate across the New World
with a widely distributed mutualistic fungal lineage (Silva-Pinhati et al. 2004; Mikheyev et al. 2006,
2007, 2008, 2010; Mueller et al. 2011a; Mueller et al. in review). In the leafcutter mutualism, one
dominant fungus clade, called Clade-A fungi, is associated with leafcutter ant species across the entire
leafcutter range from Argentina to the USA, including several leafcutter ant species inhabiting Cuba and
other Caribbean islands (Mikheyev et al. 2006; Mikheyev 2008; Mueller et al. 2011a; Mueller et al. in
review). Clade-A fungi identified so far were called either Leucocoprinus gongylophorus (Heim 1957) or
Leucoagaricus weberi (Muchovej et al. 1991), two species that were described from mushrooms
(basidiomes, a sexual fungal stage) growing from gardens of Acromyrmex and Atta nests (Möller 1893;
Supporting Information why the widely-cited placement of these mushrooms into the genus
Leucoagaricus by Singer (1986) is inaccurate, and why we use here Leucocoprinus gongylophorus rather
than Leucoagaricus weberi.] Mushrooms or mycelia of L. gongylophorus cultivar growing independent
of a leafcutter nest have so far not been collected, but such free-living mushrooms are known for the
cultivars of lower-attine, non-leafcutter ants (Mueller et al. 1998, 2001, 2005; Mueller 2002; Solomon et

Although most leafcutter species studied so far cultivate Clade-A fungi, some ecologically prominent
leafcutter species from across South America (e.g., Atta laevigata, At. vollenweideri; Solomon et al. 2008;
Delabie et al. 2011) cultivate Clade-B fungi (Mueller et al. in review), a clade of fungi that was thought

This article is protected by copyright. All rights reserved
previously to be associated exclusively with the non-leafcutting *Trachymyrmex* and *Sericomyrmex* ants that, together with the two leafcutter ant genera *Atta* and *Acromyrmex*, comprise the clade of "higher-attine ants." Moreover, some higher-attine non-leafcutter ant species in the genus *Trachymyrmex* and one lower-attine ant species in the genus *Apterostigma* also cultivate Clade-A fungi (Schultz et al. 2015; Sosa-Calvo et al. 2017; Mueller et al. in review; Fig. S1). Leafcutter and non-leafcutter higher-attine ants therefore share a pool of fungi belonging to these two fungal clades. Clade-A fungi likely represent a single species of fungus, called *Leuocoprinus gongylophorus* (i.e., formerly called *Attamyces bromatificus* as the vegetative mycelial form; Kreisel 1972). Clade-B fungi represent at least six well-supported lineages of fungi, each likely a separate cultivar species, and almost all of these Clade-B lineages have been found also in association with leafcutter ants (Fig. S1; Mueller et al. in review). The so-called higher-attine fungi (Clade-A & Clade-B fungi), therefore co-evolve diffusely with their higher-attine ant hosts (*Atta, Acromyrmex, Trachymyrmex, Sericomyrmex*), and higher-attine ant lineages occasionally transition between Clade-A and Clade-B cultivation. The frequencies of these transitions over evolutionary and ecological times are unknown, but some higher-attine ant species appear to cultivate both Clade-A and Clade-B fungi in some populations (Mueller et al. in review; Table S10), a kind of local polyculture within an ant population seen also in an asexual lower-attine ant (Rabeling 2004; Himler et al. 2009; Kellner et al. 2013), but not in all lower-attine ants (Mehdiabadi et al. 2012).

Because of vertical inheritance of fungal cultivars from maternal to offspring nests, leafcutter ants and fungi were initially predicted to co-migrate and co-reproduce together, and initially were even thought of as ancient asexual clones (Chapela et al. 1994). However, several population-genetic and phylogenetic observations are inconsistent with strict vertical inheritance and strict clonal reproduction. First, different sympatric leafcutter ant species sometimes cultivate genetically identical cultivar clones, suggesting recent exchange of fungal clones between nests of different ant species and possible “sweeps” of cultivars through leafcutter communities through unknown mechanisms of lateral between-nest cultivar transfer, such as garden stealing by ants or cultivar dispersal by unknown vectors (Adams et al. 2000; Green et al. 2002; Mikheyev et al. 2007, 2010; Mueller et al. 2011a). Second, molecular-phylogenetic analyses (Mikheyev et al. 2006, 2010) and population-genetic microsatellite-marker analyses (Mueller et al. 2011a) indicate genetic admixture between *L. gongylophorus* populations associated with *Atta* and *Acromyrmex* species across North America (Mexico, southern USA, Cuba). The observation of genetic admixture between *L. gongylophorus* populations across an oceanic barrier (between mainland Mexico and Cuba) that should preclude dispersal of leafcutter ants is significant, because it suggests that *L. gongylophorus* fungi may be able to disperse also independently from the ant hosts (e.g., via spores or non-ant vectors; Möller 1893; Pagnocca et al. 2001; Mueller 2002; Mikheyev et al. 2006; Mueller et al.

This article is protected by copyright. All rights reserved
Germination of spores from *L. gongylophorus* mushrooms has been documented so far only by Möller (1893; details in Supporting Information).

Biogeography of Leafcutter Ants (Atta, Acromyrmex)

Far more is known about the biogeography of leafcutter ants than about their fungi. The currently recognized 17 *Atta* and 31 *Acromyrmex* leafcutter species (plus at least four social-parasitic *Acromyrmex* species; Rabeling & Bacci 2010; Rabeling *et al.* 2015) form a well-supported monophyletic group that originated 16-19 million years ago (Ješovník *et al.* 2016; Nygaard *et al.* 2016; Branstetter *et al.* 2017).

Two leafcutter species occur at the northern range limit in the USA, five species in Mexico, eight species in Central America (details in Supporting Information), and a parallel gradient in leafcutter species diversity occurs also at the southern range in Argentina (Farji-Brener & Ruggiero 1994). About 40 described leafcutter species occur in South America, with the greatest concentration of sympatric leafcutter species in grassland habitats of northern Argentina, Paraguay, Uruguay, and Southern Brazil (Borgmeier 1959; Gonçalves 1961; Fowler 1983; Fowler & Claver 1991; Farji-Brener & Ruggiero 1994; Mayhé-Nunes & Jaffé 1998; Fernández & Sendoya 2004; Wild 2007; Mueller & Rabeling 2008; Brandão *et al.* 2011; Delabie *et al.* 2011; Cristiano *et al.* 2016). Wild (2007), for example, reports 25 leafcutter species for Paraguay.

Because the greatest concentration of leafcutter species diversity occurs in grasslands of southern South America, early biogeographic models (Kusnezov 1963; Fowler 1983) postulated that leafcutter ants originated in open habitats of southern South America, specifically in grasslands (Fowler 1983) and not in humid rainforest (Kusnezov 1963); from southern South America, leafcutter ants then expanded into diverse habitats across South America, and later into Central and North America once leafcutter ants could disperse across the Central American land bridge. Recently, however, Branstetter *et al.* (2017) inferred the biogeographic history mapped onto a phylogeny of attine ants, and Branstetter *et al.*’s modeling suggests a possible origin of leafcutter ants in seasonally dry habitats in Central America, but their analyses could not rule out a South American origin with confidence. There exists no definitive fossil evidence that indicates the presence of leafcutter ants outside of South America prior to the closing of the Central American land bridge 1-5 million years ago, or an earlier presence in South America (see discussion on attine fossils in the Supporting Information). Without leafcutter fossils, biogeographic histories of leafcutter ants have to be inferred with the help of current distributions.
Acromyrmex biogeography: Because no detailed phylogenetic analyses exist for Acromyrmex, the biogeography of Acromyrmex is less understood than the one for Atta. Earlier morphological studies partitioned Acromyrmex into two groups (sub-genera Acromyrmex and Moellerius; Gonçalves 1961), but molecular-phylogenetic analyses did not recover these two groups as monophyletic (Cristiano et al. 2013; Schultz et al. 2015; Branstetter et al. 2017), and the morphologically unique species Acromyrmex striatus, traditionally placed into the Moellerius sub-genus (Gonçalves 1961; Fowler 1988), actually represents the sister lineage to all other leafcutter ants (Cristiano et al. 2013). Because Ac. striatus and its putative sister species Ac. silvestrii occur in grassland habitats of northern Argentina, Paraguay, Uruguay, and southernmost Brazil (Fowler 1983; Farji-Brener & Ruggiero 1994; Cristiano et al. 2016), the sister-group relationship of Ac. striatus to the remaining leafcutter ants supports an origin of leafcutter ants in southern South America, as postulated by Kusnezov (1963) and Fowler (1983) (see also Brandão et al. 2011). The existence of Ac. striatus and Ac. silvestrii in southern South America, as well as the main concentration of extant leafcutter species diversity in southern South America, is difficult to reconcile with Branstetter et al.’s hypothesis of a Central American origin of leafcutter ants.

Atta biogeography: Of four well-supported sub-clades of Atta (Borgmeier 1959; Bacci et al. 2009), representatives from two clades (Neoatta, Atta sensu stricto) occur in both South America and in Central America, whereas the species-rich Epiatta clade occurs exclusively in South America (including dominant pest species such as At. bisphaerica, At. capiguara, At. saltensis, At. vollenweideri, At. laevigata, and At. opacipes), and species in the Archeatta clade occur only in North America (At. mexicana, At. texana, At. insularis, At. cubana; presumably these species diversified in that northernmost region of the Atta distribution). The derived position of the South American Epiatta clade within the genus Atta and an early-diverging position of the North American Archeatta clade within the genus (Bacci et al. 2009; Cristiano et al. 2013) supports an origin of the genus outside of South America. On the other hand, the far greater diversity of South American Atta species could suggest a South American origin, but this can also be explained as a radiation of successful Atta lineages that spread from Central America across South America. Diversification within species has been analyzed only in three widespread Atta species (At. cephalotes, At. sexdens, At. laevigata) for which within-species diversity accumulated in the past 0.5-3 million years (Solomon et al. 2008).

Biogeography of leafcutter fungi

Very little is known about the biogeography of fungi cultivated by leafcutter ants. Population-genetic analyses using microsatellite markers showed that in Panamá, sympatric populations of five leafcutter species (At. cephalotes, At. colombica, At. sexdens, Ac. octospinosus, Ac. echinatior) share a pool of six
genotype-clusters of *L. gongylophorus* fungi (Mikheyev et al. 2007), with only 10% of the observed genetic variation attributable to differences between leafcutter hosts, indicating local cultivar sharing between *Atta* and *Acromyrmex*. Likewise, analyses of AFLP markers showed that Panamanian cultivars from sympatric *Ac. octospinosus* and *Ac. echinatior* can be grouped into at least 5 distinct clusters (Bot et al. 2001), with each cluster containing fungi cultivated by the two sympatric *Acromyrmex* species.

Across North America, five leafcutter species (*At. texana*, *At. mexicana*, *At. cephalotes*, *At. insularis*, *Ac. versicolor*) share four genotype-clusters of *L. gongylophorus* (Mueller et al. 2011a), with evidence of admixture between these distinct clusters. No comparable population-genetic analyses involving multiple fungi per leafcutter species exist for South American leafcutter fungi, except for the study of Pereira et al. (2015) who showed that three cultivars from *Ac. heyeri* and three from *Ac. ambiguus* from southern Brazil form two closely-related fungal clades grouping by ant species. The population-genetic linkages between South, Central, and North American leafcutter fungi are unknown. Clade-B fungi cultivated by leafcutter ants are known so far only from South America (from Argentina, Brazil, French Guiana, and Venezuela; Mueller et al. in review).

In North America, genetically identical clones of *L. gongylophorus*, genotyped at 12 microsatellite loci, can range over large areas. For example, the most widely distributed clones ranged across 50,000-80,000 square kilometers in south-central Texas (approximately the area of Panamá or French Guiana) (Mueller et al. 2011a). Comparably detailed population-genetic analyses are currently lacking for leafcutter-fungus populations from Central and South America. Widely-distributed cultivar clones may exist also in South America because fast-evolving sequences (e.g., ITS rDNA) of South American leafcutter fungi can be nearly identical for collections from sites 2600 kilometers apart (Silva-Pinhati et al. 2004). On the other hand, genetic admixture between differentiated *L. gongylophorus* populations appears more pronounced in tropical populations in Mexico than in subtropical populations in the USA (Mueller et al. 2011a), suggesting that, because of more frequent recombination in the tropics through unknown processes of genetic exchange (e.g., through spore dispersal, or exchange of nuclei between multinucleate mycelia; Mueller et al. 2011a; Sen et al. 2010; Carlson et al. in press), genetically identical cultivar clones may not range as widely in the tropics compared to their ranges observed at the subtropical, northern range limit of the leafcutter distribution.

Three additional expectations about the biogeography of leafcutter fungi derive from biogeographic patterns of widely distributed *Atta* species in South America (Solomon et al. 2008). First, major rivers such as the Amazon or the Orinoco do not represent effective dispersal barriers to *Atta* ants (Solomon et al. 2008). Because the dispersing female reproductives transport fungal inocula during mating flights,
major rivers would therefore also not represent dispersal barriers for leafcutter fungi. In fact, even the oceanic barrier between Cuba and the mainland does not appear to be an effective dispersal barrier for leafcutter fungi because fungi cultivated by *At. insularis* in Cuba have close population-genetic affinities to fungi cultivated by *At. mexicana* and *At. texana* in mainland North America (Mikheyev et al. 2006; Mueller et al. 2011a), whereas these three ant species are significantly diverged from each other (Bacci et al. 2009) and the current distance between Cuba and mainland greatly exceeds the dispersal distance of leafcutter ants during a mating flight. This suggests the possibility that leafcutter fungi may disperse independently from the ants, for example through airborne spore dispersal (see above). Second, Pleistocene refugia in South America apparently did not contribute to inter- and intra-species diversification in *Atta* ants (Solomon et al. 2008) and presumably therefore also not to diversification in the associated fungal cultivars. Third, leafcutter abundance decreases significantly with altitude, and leafcutter ants become rare at elevations of 2000-2500 meters (Weber 1972; Farji-Brener & Ruggiero 1994; Delabie et al. 2011; Fernández et al. 2015; additional discussion in Supporting Information). This suggests that the Andes in north-western South America (Colombia, Ecuador, Peru) represent a significant, although not insurmountable, dispersal barrier for leafcutter ants and any co-dispersing fungal cultivars.

Here we build on these previous studies by conducting the first comprehensive population-genetic and biogeographic analyses of *L. gongylophorus* fungi (i.e., Clade-A fungi sensu Mueller et al. in review) propagated by leafcutter ants across the ants' entire range from Argentina to the USA. Our study specifically asks whether cultivar clones are shared locally between sympatric leafcutter ant species; whether fungal cultivars differ between leafcutter ants that are specialized to cut either dicot or monocot (grass) leaf substrate for fungiculture (Vasconcelos & Fowler 1990); and whether genetic diversity of *L. gongylophorus* changes across its range.

Materials and methods

Sample Collection and Sequencing

Between 1990 and 2008, we collected fungus-garden material from 474 leafcutter nests of 8 *Atta* species (294 nests) and 22 *Acromyrmex* species (180 nests) from Argentina (n=29 samples), Uruguay (n=2), Brazil (n=123), Peru (n=48), Ecuador (n=14), French Guiana (n=32), Suriname (n=1), Guyana (n=6), Venezuela (n=40), Trinidad & Tobago (n=8), Colombia (n=34), Panamá (n=91), Costa Rica (n=7), Honduras (n=1), Mexico (n=15), Cuba (n=5), and the USA (n=18) (Tables S1 & S2). Our garden samples from 8 *Atta* and 22 *Acromyrmex* species cover 47% of 17 *Atta* species currently recognized, and 71% of 31 *Acromyrmex* species (not including social-parasitic *Acromyrmex* species). Methods of
collection, storage, and sequencing are described in the Supporting Information. Collection information and Genbank accessions for all garden samples, including samples from non-leafcutter fungus-growing ants used for outgroup analyses, are listed in Table S1.

We obtained sequence information for 483 fungi [430 fungi from leafcutter ants, 40 fungi from Trachymyrmex ants, 4 fungi from Sericomymex ants, and 9 outgroup fungi (4 lower-attine cultivars, 5 free-living Leucocoprinus fungi); Table S1]. We initially intended to use three intron-spanning genes (EF-1α, RAD, DMC; Mikheyev et al. 2006) to resolve phylogenetic structure among Clade-A fungi. However, because preliminary phylogenetic analyses revealed that each of the three genes shows insufficient variation to resolve phylogenetic relationships between Clade-A fungi, we discontinued sequencing of the RAD and DMC genes, and instead relied on information from the EF-1α gene to classify leafcutter fungi into Clade-A and Clade-B fungi, then characterized genetic differences between Clade-A fungi with microsatellite markers. We present the exploratory analyses of the EF-1α, RAD and DMC genes in Figs. S1-S4, and we used the information from the most comprehensive EF-1α dataset to identify Clade-A fungi to be analyzed further with microsatellite genotyping.

Microsatellite genotyping

We generated microsatellite information for five loci (A1132, C101, C126, C117, B12) developed for Clade-A fungi (Scott et al. 2009). We chose these loci because they could be scored reliably with few scoring errors (Mueller et al. 2010; Mueller et al. 2011a,b). Details of microsatellite amplification methods and scoring on an ABI PRISM 3100 automated sequencer are in the Supporting Information. All microsatellite chromatograms were scored by a single researcher (HDI) to standardize the allele-calling procedure.

Population-genetic analyses of microsatellite markers

We assessed population structure with STRUCTURE v2.3.4 (Pritchard et al. 2000), which clusters individuals into genotype-clusters (i.e., populations) and estimates admixture using multilocus genotypes. Because L. gongylophorus fungi are polyploid and multinucleate, we treated each allele as a dominant marker in STRUCTURE, as recommended by Falush et al. (2007). Ploidy appears to be variable between individual strains (Kooij et al. 2015a; Carlson et al. in press), so we did not use standard population-genetic statistics (e.g., F-statistics, heterozygosity, etc.) to describe inferred populations. We first assessed population structure using the default settings of STRUCTURE, but to reduce bias in prior assumptions in a separate analysis, we also left allele frequencies uncorrelated and chose alpha (α) to be 1/10 of the default setting (i.e., α=0.1) (Wang 2017). Both the default settings and the modified settings...
yield identical recommendations of K=3 as the most informative number of clusters, following the method of Evanno et al. (2005) (Fig. S5). We processed individual and population matrices from STRUCTURE HARVESTER (Earl et al. 2012) in the cluster matching program CLUMPP (Jakobsson & Rosenberg 2007), then processed the q-matrices of CLUMPP in Distruct (Rosenberg 2004) to generate the barplot in Fig. 1 (bottom) and to map pie charts in Fig. 1 using the open-source geographic information system tools in R (R Core Team 2008).

To complement the STRUCTURE analysis, we conducted Principal Component Analysis (PCA) and Discriminate Analysis of Principal Components (DAPC) using adegenet 2.0.1 (Jombart & Ahmed 2011). DAPC transforms genetic data into principal components, then performs a discriminant analysis, which maximizes the variation between samples assigned to K clusters and minimizes variation within each cluster. Unlike STRUCTURE, DAPC does not assume a particular population genetic model (e.g., that markers are in Hardy-Weinberg equilibria and unlinked). As in the STRUCTURE analysis, we specified K=3 clusters prior to implementing DAPC. To reduce overfitting, the number of principal components (n=5) used to calculate the discriminant functions was determined by cross-validation in adegenet, using 10 folds with 20% of the data in each fold. We visualized sample assignments to clusters geographically using ggmap 2.6.1 (Kahle & Wickham 2017).

Results

We characterized through sequencing or microsatellite genotyping the cultivar fungi from 474 leafcutter nests from 8 Atta and 22 Acromyrmex species collected in 17 countries ranging from Argentina/Uruguay to the southern USA (Tables S1 & S2).

Phylogeny of Fungi Cultivated by Higher-Attine Ants

Phylogenetic relationships of these fungi (Figs. S1 & S2) confirm the pattern already observed in Mikheyev et al. (2008), Ješovnik et al. (2017) and Mueller et al. (in review) that higher-attine fungi fall into two groups, a genetically homogenous group of Clade-A fungi (*Leucocoprinus gongylophorus*) and a more diverse group of Clade-B fungi that is subdivided into at least six distinct subclades (Fig. S1). We did not identify any unknown equivalent clades of higher-attine fungi (i.e., no Clade-C or -D fungi).

The three protein-coding genes analyzed here (Figs. S1-S4), as well as two additional ribosomal genes analyzed in Mueller et al. (in review), failed to uncover significant variation within Clade-A fungi across the leafcutter range from Argentina to the USA. This lack of variation in Clade-A fungi contrasts with the substantial generic and species diversity of the Clade-A-cultivating ant hosts, which includes at least 7
Atta species, 22 Acromyrmex species, and 5 Trachymyrmex species (Table S1). Because of the minimal genetic diversity found so far among Clade-A fungi (Figs. S1-S4; Silva-Pinhati et al. 2004; Mikheyev et al. 2006, 2007; Lugo et al. 2013; Wallace et al. 2014; Pereira et al. 2015; Bich et al. 2016), Clade-A fungi are thought to represent a cohesively-evolving lineage (i.e., a single fungal species), confirming the interpretation of Mikheyev et al. (2006) that Clade-A fungiculture (i.e., L. gongylophorus fungiculture) is a one-to-many fungus-ant association. Across all higher-attine ants and their known fungi (Fig. S1; Mueller et al. in review), however, fungus-ant associations are many-to-many because higher-attine ant-lineages switch between Clade-A and Clade-B over evolutionary and ecological time (see below), and long-term ant-fungus co-evolution is therefore less specific than currently believed.

Clonal Propagation of Fungal Cultivars
The five microsatellite loci (Table S3) identified 241 genotypes among the 419 Clade-A fungi collected from 419 different leafcutter ant nests; that is, 178 fungal genotypes (42.5%) were collected from more than one leafcutter nest. Most of these duplicate cases (75.7%, 56 of 74 cases) of fungus-genotype identity between nests involve nests of the same ant species collected in close geographic proximity (typically within 50 km of each other or less; Table S3). This is consistent with vertical transmission of cultivar clones within ant lineages, and these fungal genotypes are likely identical in proximate nests of the same ant species because of limited dispersal per ant generation and vertical inheritance of fungal clones. Cases of cultivar identity between different ant species and between different leafcutter genera are discussed below.

Population Structure of L. gongylophorus fungi cultivated by leafcutter ants
Genetic structure in L. gongylophorus is strongly correlated with geography. The methods of Evanno et al. (2005) determined that K=3 (Fig. S5) is the most informative number of genetic sources (populations) for modeling in STRUCTURE. Fig. 1 plots STRUCTURE assignments of 419 fungal samples to these populations and maps these onto ten regions defined by country of collection (some adjacent countries are combined, Brazil is divided into north and south) (Table S3). The three populations correspond approximately to southern South America, northern South America, and North & Central America (Fig. 1). Fungi from outside of South America and most samples from west of the Andes in Colombia and Venezuela, are assigned by STRUCTURE to the "orange" population (Fig. 1). Members of the "green" population (Fig. 1) and the "purple" population occur almost exclusively in South America. If the number of co-occurring genetic sources (populations) inferred by STRUCTURE is an indication of local genetic diversity, fungal populations are less diverse in Central and North America compared to South America.
The local proportion of admixed individuals (fungi combining alleles assigned by STRUCTURE to different genetic sources) appears greatest in Colombia and Venezuela (Fig. 1 bottom).

Analysis of the principal components and their discriminant functions using DAPC yielded similar population subdivision as in STRUCTURE. The first two principal components (representing 38.3% of the genetic variation), group the Clade-A leafcutter fungi into three clusters, with PCA axis 2 corresponding to latitude south-to-north (Fig. 1 top-left). All fungi from North and Central America, plus almost all fungi from west of the Andes in Colombia and Venezuela, cluster as a cohesive group, which have less diversity than the fungi belonging to two clusters from South America. A second cluster includes predominately fungi from Peru, Ecuador, Venezuela, the Guianas, and northern Brazil; and a third cluster mostly fungi from Argentina and southern Brazil (Fig. 1). Discriminant analysis of the first 10 principal components, which contain 78.0% of the genetic variation, resulted in assignments of leafcutter fungi to clusters (Fig. 1 top-right) also similar to the geographic distribution of clusters in the STRUCTURE analysis. In both the DAPC and STRUCTURE analyses, therefore, populations of \textit{L. gongylophorus} fungi in Central and North America are less diverse than populations in South America.

Estimating admixture using DAPC requires an \textit{a priori} assignment of samples to populations. We did not have an \textit{a priori} hypothesis regarding population structure, and thus did not attempt an admixture analysis using DAPC.

\textbf{Biogeographic Patterns of Allele Diversity of \textit{L. gongylophorus} Fungi Cultivated by Leafcutter Ants}

In contrast to the strong spatial structure, allele richness (total number of alleles) of fungi shows no consistent patterns across the entire range of \textit{L. gongylophorus} fungi cultivated by leafcutter ants (Figs. S6A-E). Because \textit{L. gongylophorus} fungi are polyploid, multinucleate fungi and ploidy appears variable between fungal strains (Scott \textit{et al.} 2009; Kooij \textit{et al.} 2015a; Carlson \textit{et al.} in press), we were not able to use standard population-genetic statistics (e.g., heterozygosity), so we examined biogeographic distributions of the maximum number of alleles per locus (allele richness) and private alleles (alleles present only in specific populations). For adequately-sampled populations (i.e., at least 25-30 individuals per population in microsatellite-marker analyses; Hale \textit{et al.} 2012), allele richness and heterozygosity are correlated, and allele richness can therefore serve as a proxy of heterozygosity (Eckert \textit{et al.} 2008). In our survey, allele richness does not change as a function of latitude (Fig. S6); such latitudinal changes would be expected if migration between biogeographic regions is limited and older populations had more time to accumulate allelic diversity than younger populations founded by recently expanding leafcutter lineages (Eckert \textit{et al.} 2008). Second, populations at the range limit in the USA and the island population in Cuba
do not show reduced allelic diversity (Fig. S6), as would be expected for founder populations, for populations with reduced effective population sizes at range limits (Eckert et al. 2008), or for populations at an expanding front experiencing allele surfing (Burton & Travis 2008; Peischl et al. 2013). Third, there were no private alleles that characterized all individuals in a biogeographic region or in any location. Some alleles occurred only in North America, but only in some, not all, individuals (e.g., alleles 212, 215, and 218 at locus A1132); some alleles occurred only in South America (e.g., allele 243 at locus C126, allele 188 at locus A1132); and a null allele at locus B12 occurred only in northern South America (mostly in Peru and Ecuador, also in Colombia, Venezuela, and French Guiana; Fig. S6E, Table S4). Overall, however, no biogeographic region showed an obviously increased allelic diversity that could indicate a potential location of older populations where leafcutter fungi may have originated and accumulated greater allelic diversity over time, or where evolutionary forces may operate that increase (or decrease) allele diversity.

Are there Differences between Fungi Cultivated by Dicot- Versus Monocot-Cutting Leafcutter Ants?

Leafcutter ants specialized to forage on monocotyledonous plants (grasses), or on both grasses and dicotyledonous (dicot) plants, are more likely to cultivate Clade-B fungi (Table S6), but the association between foraging preference and cultivar specialization, although statistically significant, is weak. Combining information from *Acromyrmex* and *Atta* (Table S6; additional discussion in Supporting Information), and combining into one group those leafcutter species that are specialized to cut grasses or cut both grasses and dicots, 100% of the 23 dicot-specialized leafcutter species cultivate Clade-A fungi (and for only two of these leafcutter species there is evidence that they also cultivate Clade-B fungi at some locations; Tables S6 & S10) and therefore 0% of these 23 dicot-specialized leafcutter species are specialized on Clade-B fungi. In contrast, four (40%) of the 10 species that cut grasses cultivate Clade-B fungi, but for two of the Clade-B-cultivating species only one single fungus has been identified so far (Table S6). The Fisher’s Exact Test statistic for this distribution is \(p = 0.0051 \) (23 counts dicot & Clade-A fungi; 0 counts dicot & Clade-B; 4 counts grass & Clade-B; 6 counts grass & Clade-A), and Barnard’s Exact Test statistic is \(p = 0.0040 \).

Limiting the analysis to only Clade-A fungi and ignoring Clade-B cultivation, our microsatellite marker analyses did not reveal obvious differences between Clade-A fungi cultivated by the 22 leafcutter species in our survey (both *Acromyrmex* and *Atta*) that preferentially forage on dicots compared to Clade-A fungi cultivated by three species preferentially foraging on grasses (*Ac. balzani*, *Ac. heyeri*, *Ac. landolti*), or compared to one species foraging on both grasses and dicots (*Ac. lobicornis*) (Table S3). In fact, we found two cases where sympatric dicot-specialist and grass-specialist leafcutter species cultivated in the
same location the same fungal clone (defined as identity in all alleles across the 5 microsatellite loci), that of *Ac. landolti* and *At. cephalotes* in Colombia, and that of *Ac. heyeri*, *Ac. balzani*, and *At. sexdens* in southern Brazil (Table S3). This identity of fungal genotypes suggests that dicot- and grass-specialized leafcutter species may cultivate fungi from shared pools of Clade-A fungi circulating locally with a leafcutter ant community, and even dicot- and grass-specialized leafcutter species may exchange cultivars on occasion.

Are there Differences between Clade-A Fungi Cultivated by Atta versus Acromyrmex Ants?

Recent studies argued that *L. gongylophorus* fungi (i.e., Clade-A fungi) cultivated by *Atta* and *Acromyrmex* ants in Panamá represent separate gene pools (Kooij *et al.* 2015b), and that two *L. gongylophorus* fungi cultivated by *Atta* versus *Acromyrmex* ants in Panamá diverged from each other 7.2 million years ago (confidence interval 5.4-9.0 million years ago; Nygaard *et al.* 2016; pages 43 & 44 in the Supplementary Methods of Nygaard *et al.*). Because we did not find differences between *Atta*-cultivated versus *Acromyrmex*-cultivated *L. gongylophorus* fungi in our phylogenetic analyses (Figs. S1-S4), we tested for possible differences using our faster-evolving microsatellite markers, which should have adequate resolution to detect Nygaard *et al.*’s hypothesized ancient diversification dating to 5-9 million years ago. Our analyses do not support genetic isolation between *Atta*-cultivated versus *Acromyrmex*-cultivated *L. gongylophorus* fungi, for two main reasons.

First, at most of the locations at which we obtained adequate samples of *L. gongylophorus* fungi from both *Atta* and *Acromyrmex* nests, we found *Atta*-cultivated and *Acromyrmex*-cultivated fungal clones that were identical in all alleles across the five microsatellite loci (Table S3). *Atta* and *Acromyrmex* nests cultivating identical fungal clones (as defined by our five markers) were located typically within 50 km of each other, but there were also instances of cultivar identity between *Atta* and *Acromyrmex* nests about 1200 km distant (Brazil) and 1900 km distant in Mexico/USA (Table S3). Because many locations were undersampled in our study (e.g., we were able to obtain collections from only one genus from the two leafcutter genera present at a location; Table S3), sharing of identical cultivar clones is likely more prevalent in nature than indicated in our collection. Overall, we found 8 cases of sharing of fungal clones between different leafcutter genera and 10 cases of sharing of cultivar clones between different congenic species (Table S3). The near identical incidence of cultivar sharing (8 versus 10 cases) could suggest that the same biological processes led to such cultivar identity (e.g., horizontal transmission of cultivars between nests), and that cultivars may transfer almost as readily between nests of different leafcutter genera as between nests of the same leafcutter genus.
Second, STRUCTURE analyses of fungi from Panamá, the best-sampled region in our survey, indicates that *Atta*- versus *Acromyrmex*-cultivated fungi do not form genetically distinct clusters, but are admixed (Fig. S8A-D), regardless of whether we analyze regional fungal diversity (Colombia, Panamá, Costa Rica; n=125 samples), within-country diversity (only Panamá; n=89 samples), provincial diversity (Panamá Canal Zone; n=42 samples), or the local diversity in Gamboa (n=27) also studied by Kooij *et al.* (2015b) (Fig. S8A-D; see additional discussion in the Supplemental Information). Our STRUCTURE analyses therefore agree with the findings of three previous studies: Mikheyev *et al.*’s (2007) STRUCTURE analysis showing that *Atta* and *Acromyrmex* ants from Gamboa share a pool of fungal cultivars; Kooij *et al.*’s (2015a) sequence analysis showing that Panamanian leafcutter fungi do not group into separate clades of *Atta*-cultivated and *Acromyrmex*-cultivated fungi; and Mueller *et al.*’s (2011a) STRUCTURE analysis showing that *Atta* and *Acromyrmex* ants share cultivars from the same genotype cluster (so-called M-fungi) in North America.

Discussion

We aimed to conduct a comprehensive biogeographic and population-genetic analysis of fungi propagated by leafcutter ants across the entire leafcutter range from Argentina to the USA, combining collections from 22 collaborating laboratories and surveying leafcutter ants in 17 Neotropical countries (Tables S1 & S2). Analyses of 474 fungi cultivated by leafcutter ants revealed (a) no novel cultivar types beyond the known Clade-A and Clade-B cultivars of leafcutter ants (Fig. S1; see also Mueller *et al.* in review); (b) moderate support that those leafcutter species that cut grass as fungicultural substrate show a higher frequency of cultivating Clade-B fungi, whereas all leafcutter species preferring dicot plants as fungicultural substrate seem specialized on cultivation of Clade-A fungi (Table S6); (c) cultivar sharing between sympatric leafcutter species within local communities, such that fungi cultivated by *Atta* species are overall not distinct from those cultivated sympatrically by *Acromyrmex* species; (d) three genotype-clusters of Clade-A fungi across the range from Argentina to the USA (Fig. 1), with local prevalence of these genotype-clusters corresponding approximately to southern South America, northern South America, and Central & North America (Fig. 1); (e) gene flow among Clade-A fungi cultivated by leafcutter ants in different biogeographic regions, including fungi cultivated by leafcutter species in Cuba, such that all Clade-A fungi from Argentina to the US represent a single species, *Leucocoprinus gongylophorus* (additional discussion in Supporting Information); and (f) reduced genetic diversity of leafcutter fungi in Central & North America and greatest genetic diversity of leafcutter fungi concentrated in South America (Fig. 1, Table S1).

Biogeographic origin of leafcutter fungiculture and leafcutter ants

This article is protected by copyright. All rights reserved
Kusnezov (1963) and Fowler (1983) hypothesized that leafcutter ants originated in southern South America, because extant leafcutter ants exhibit the greatest species diversity there, particularly *Acromyrmex* species. In contrast, Branstetter et al. (2017) recently inferred biogeographic history mapped onto a phylogeny of attine ants, and their biogeographic modeling suggested a possible origin of leafcutter ants in Central America. These two hypotheses make different predictions regarding the biogeographic region where leafcutter fungi can be expected to be most diverse. Assuming the traditional view that leafcutter ants became specialized to cultivate Clade-A fungi around the time of the origin of the leafcutter clade 19 million years ago (mya), and assuming no other factors affect diversity of fungal cultivars (e.g., genetic drift, gene flow, and horizontal cultivar transfer do not affect cultivar diversity differently in different populations across the range of leafcutter ants), the hypothesis of a Central American origin predicts that fungi cultivated by leafcutter ants should be most diverse in Central America, and less diverse in South America colonized secondarily by leafcutter lineages dispersing with their cultivars from Central to South America. In contrast, the hypothesis of a South American origin predicts the opposite, a greater diversity of leafcutter fungi in South America that accumulated there during the past 19 million years of leafcutter diversification, and less fungal diversity in Central and North America colonized secondarily, and possibly recently (less than 5 mya), by leafcutter lineages migrating out of South America. Our phylogenetic analyses indicate a mix of Clade-B & Clade-A cultivation by leafcutter ants in southern South America (and apparent absence of Clade-B cultivation by leafcutter ants in the well-surveyed Central American populations; Table S1, Fig. S1), and our principal component and STRUCTURE analyses indicate greatest diversity of Clade-A fungi in South America (Fig. 1). Both phylogenetic and population-genetic patterns of cultivar diversity are consistent with the prediction of the Kusnezov-Fowler model of a South American origin of leafcutter ants and a secondary expansion into Central and North America.

It is possible to conceive alternative scenarios of leafcutter ant-fungus evolution that assume a Central American origin of the leafcutter ant clade and a South American origin of Clade-A fungi. For example, the origin of leafcutter ants may have been decoupled from the origin of Clade-A fungi. Specifically, leafcutter ants may have originated in Central America, but Clade-A cultivars originated in South America in ancestral *Trachymyrmex* lineages, as discussed by Mueller et al. (in review); Clade-A cultivars were then secondarily acquired by leafcutter ants in South America after they dispersed from Central into South America, a successful Clade-A lineage (i.e., *L. gongylophorus*) eventually spread across the entire leafcutter range due to efficient horizontal transmission between leafcutter species, and only a limited genotype diversity of Clade-A cultivars spread so far into Central and North America from diverse Clade-A populations in South America (Fig. 1). Other such *ad hoc* scenarios are also possible.
and some of these scenarios can be tested by precise dating of the evolutionary origins of leafcutter fungi relative to the origin of the leafcutter clade.

Dates for crown-group and stem-group ages for Clade-A fungi and for the leafcutter-ant clade have been estimated in six phylogenetic analyses (Table 1). When comparing crown ages (age of most recent common ancestor, MRCA; coalescence) of Clade-A fungi and the leafcutter ant clade, the MRCA of Clade-A fungi is estimated much younger, by about 10 million years, than the MRCA of leafcutter ants (Table 1), generating a time discord (Mikheyev et al. 2010) rather than the synchrony expected if leafcutter ants and leafcutter-specific cultivars originated at the same time (Stradling & Powell 1986; Chapela et al. 1994; Hinkle et al. 1994). However, when comparing the stem age of the Clade-A lineage (age of split from Clade-B fungi) with the stem age of the leafcutter ant lineage (age of split from the Trachymyrmex septentrionalis species group), the ages are much more in agreement, 22.4-25.0 mya for the stem age of Clade-A fungi, and 17.8-21.0 mya for the stem age of the leafcutter-ant lineage (Table 1). The somewhat older age of the Clade-A lineage could even suggest that leafcutter ants did not originate coincident with Clade-A fungi as was assumed in the earliest phylogenetic studies (Chapela et al. 1994; Hinkle et al. 1994), but that the Clade-A lineage may have arisen before the origin of the leafcutter ant lineage, as discussed in Mueller et al. (in review). If so, ancestral higher-attine lineages (ancestral to the leafcutter and T. septentrionalis-group lineages) may have cultivated both Clade-A and Clade-B fungi as far back as 22-25 mya (Table 1), well before the origin of the leafcutter ant lineage, and the apparent cultivation of both Clade-A and Clade-B fungi observed in extant Trachymyrmex species and in extant leafcutter species could therefore be a retention of a plesiomorphic condition of sharing of Clade-A and Clade-B fungi between higher-attine ant lineages.

To analyze evolution of higher-attine fungiculture, therefore, it may be more fruitful to view ant diversification and fungal-symbiont diversification as separate processes that may be, or may not be, intimately linked. Specifically, at least four scenarios have been discussed in the literature:

(i) **Coincident-Scenario:** Clade-A fungi originated coincident with the origin of leafcutter ants, and specialization by leafcutter ants on superior Clade-A fungi facilitated the diversification of leafcutter ants, as assumed by earlier studies (e.g., Stradling & Powell 1986; Chapela et al. 1994; Hinkle et al. 1994). Under this scenario, the documented cases of Clade-A cultivation by Trachymyrmex ants (Fig. S1; Mueller et al. in review) would be the result of later horizontal transfer of Clade-A cultivars from leafcutter ants to Trachymyrmex ants.

(ii) **After-Scenario:** Clade-A fungi cultivated by leafcutter ants "originated subsequent to the origin of [leafcutter ants] from a fungal lineage cultivated by Trachymyrmex ants" and "leafcutting ants
horizontally acquired a replacement cultivar after *Atta* and *Acromyrmex* had diverged" (page 2, Nygaard et al. 2016). Under this scenario, the cultivar types propagated by leafcutter ants during their early diversification are unspecified (maybe Clade-B cultivars or some unknown cultivar lineage), and these early-associated cultivar types were substituted in leafcutter lineages by "horizontally acquired ... replacement" of Clade-A fungi.

(iii) **Before-Scenario**: Clade-A fungi originated before the origin of the leafcutter clade, such that ancestral Clade-A fungi represented one of several cultivar lineages that circulated in a pool of diverse fungi shared by ancestral higher-attine lineages, as discussed above and in Mueller et al. (in review). If so, Clade-A and Clade-B fungi may have been shared between the diversifying higher-attine lineages since the early evolution of higher-attine ants, and this sharing included also the ancestral leafcutter-ant lineages.

(iv) **Recent Cultivar Sweeps**: Frequent horizontal sweeps of novel, successful Clade-A cultivars between leafcutter nests, coupled with gene flow and hybridization between all Clade-A cultivars across the entire leafcutter range, generated a recent coalescence of all extant Clade-A cultivars, as discussed by Mikheyev et al. (2010). Variants of such cultivar exchange and hybridization are also possible under the Coincident-, After-, and Before-Scenarios.

Depending on the biogeographic location of the origin of leafcutter ants, on the biogeographic location of the origin of Clade-A and Clade-B fungi, and on the relative dates of the origins of leafcutter ants and Clade-A fungi, it may be possible to derive testable predictions of biogeographic distribution of ant and fungal diversities. As a first step towards these analyses, it will be important to improve estimates of stem and crown ages for Clade-A and Clade-B fungi by improving the time-calibration of phylogenetic histories of the ant-cultivated fungi (see footnote of Table 1).

Cultivar sharing reduces ant-fungus specificity of leafcutter cultivars

Our population-genetic and clonality analyses document ongoing cultivar sharing between sympatric *Atta* and *Acromyrmex* leafcutter ants, and such cultivar sharing likely involves in some locations also some sympatric *Trachymyrmex* species (e.g., cultivar exchange between *Ac. versicolor* and *T. desertorum* in Arizona; Fig. S1). With few exceptions known so far, single leafcutter species seem to be specialized either on Clade-A fungi (e.g., all the dicot-foraging leafcutter species) or on Clade-B fungi (*At. laevigata*, *At. volleweideri*), which mirrors for leafcutter ants the kind of specialization known also for ant species in the lower-attine *Cyphomyrmex wheeleri*-group, where each *Cyphomyrmex* species cultivates predominantly its own fungal lineage (species), but different *Cyphomyrmex* species are sometimes specialized on the same fungal lineage (i.e., two *Cyphomyrmex* species can share the same kind of fungus; Mehdiabadi et al. 2012). Despite such specialization, single higher-attine species, as currently

This article is protected by copyright. All rights reserved
recognized, can cultivate both Clade-A and Clade-B fungi in some locations (e.g., *At. laevigata* in southern Brazil; *T. arizonensis* in Arizona; details in Table S10). Such cases of apparent fungal polyculture will need to be elucidated likewise with high-resolution analyses of the respective leafcutter ant hosts, to test for possible cryptic ant species.

Because of the sharing of cultivars between sympatric *Acromyrmex*, *Atta*, and likely also some *Trachymyrmex* species, and because of the possibility of genetic exchange between cultivars in different nests, cultivars may not be propagated long enough within a single ant species to evolve adaptations specific to a particular ant species (or ant genus) and its species-specific environment. This is easiest to understand in the well-surveyed Clade-A fungi, where sympatric grass-cutting and dicot-cutting species can cultivate strains of the same clonal lineage (strains that cannot be distinguished with five microsatellite markers; Table S3). This sharing of the same fungal clone-lineages between sympatric grass-cutting and dicot-cutting leafcutter species, as well as between *Atta*, *Acromyrmex*, and possibly also *Trachymyrmex* ants, suggests that Clade-A fungi may have evolved to be “general-purpose genotypes” (Lynch 1984) suited for cultivation by diverse higher-attine species with diverse fungicultural habits, as first suggested by Mikheyev *et al.* (2006).

Shortcomings of our study and suggestions for future research on leafcutter fungi

Our study has several shortcomings, which do not invalidate the above conclusions, but hopefully will be addressed in future research:

(1) Our phylogenetic analyses (Fig. S1; Mueller *et al.* in review) indicate that some *Trachymyrmex* species can also cultivate Clade-A cultivars, the dominant fungal type cultivated by leafcutter ants. A complete population-genetic analyses of Clade-A fungi would therefore include also representative Clade-A fungi from *Trachymyrmex* species, to test for population-genetic links between leafcutter- and *Trachymyrmex*-cultivated fungi. Clade-A fungi from *Trachymyrmex* species were unfortunately not included in our microsatellite analyses because we became aware of Clade-A cultivation by *Trachymyrmex* ants only after conclusion of the genotyping phase of our study. Sympatric Clade-A fungus communities that should be evaluated in future studies include, for example, the community of Clade-A cultivars of *Ac. versicolor*, *T. desertorum*, and *T. arizonensis* in Arizona; and the community of Clade-A cultivars of diverse leafcutter species, *T. intermedius*, and *T. opulentus* in north-east South America and in Central America. [*T. opulentus* is labeled *T. wheeleri* in our Fig. S1, but was synonymized by Mayhé-Nunes & Brandão 2002]. *Trachymyrmex intermedius* ranges from Mexico to French Guiana, and *T. opulentus* ranges from Honduras to northern Brazil, so Clade-A cultivation by

This article is protected by copyright. All rights reserved
these two Trachymyrmex species may occur in sympatry with the well-studied leafcutter species in Panamá. Lastly, sympatric Clade-B fungus communities likewise need further study, to test for possible sharing of Clade-B cultivars between leafcutter, Trachymyrmex, and Sericomyrmex species.

(2) Our analyses (Fig. 1) rely on information from five highly-polymorphic microsatellite loci of a polyploid, multinucleate fungus (an individual fungus may show more than two alleles per locus), and information from additional microsatellite loci would undoubtedly have increased resolution of population-genetic structure. In fact, prior analyses that genotyped leafcutter fungi from Panamá and North America with, respectively, 9 and 12 microsatellite loci (Mikheyev et al. 2007; Mueller et al. 2011a) inferred a larger number of sympatric genotype-clusters (6 clusters in Panamá, 4 clusters in North America. Identification of three genotype-clusters across the leafcutter range in our 5-locus analysis (Fig. 1) therefore is a minimum estimate. Information from additional loci, however, is unlikely to show that fungal populations in Central America are more diverse than those in South America; rather, it seems likely that far more genotype-clusters will emerge when sampling South American populations with more loci, and when sampling at the same density as the well-surveyed Panamanian population in our study. Future studies could use, for example, the two multiplex panels (15 microsatellite loci total) of Carlson et al. (in press), or consider developing genotyping-by-sequencing methods for preserved garden material.

(3) Although our survey covered 17 countries across the leafcutter-ant range, several important regions were not sampled, for example Bolivia, Paraguay, and parts of Central America; vast regions in western and central Brazil; extreme habitats (e.g., higher elevations in the Andes, seasonal wetlands of the Pantanal, western cerrado in Brazil); or a densely sampled transect across the Andes in Colombia, the transition zone from cultivation of three genotype-clusters in north-west South America to one genotype-cluster in Panama (Fig. 1). Most important, the southernmost leafcutter populations in Argentina remain to be surveyed [e.g., Ac. lobicornis ranges to ≈44° south (Farji-Brener & Ruggiero 1994), whereas our southernmost collection was from ≈35° south in Uruguay], as well as the western leafcutter populations in Argentina inhabited by unique leafcutter species like At. saltensis and Ac. silvestrii (the putative sister species to the Clade-B-cultivating Ac. striatus). Future surveys in subtropical and temperate South America should ideally also include behavioral studies of Ac. striatus and Ac. silvestrii to inform hypotheses on whether the ancestral leafcutter lineage may have been specialized to cut grass or dicot leaves, or utilized both types of leaves for fungiculture. Ac. striatus and Ac. silvestrii reportedly cut both grass and dicots, with foraging preferences possibly changing seasonally between grass and dicots (Gonçalves 1961; Bucher & Montenegro 1974; Fowler et al. 1986, 1991).
Conclusion

Most efforts to elucidate leafcutter ant-fungus associations focused so far on leafcutter ants in Central and North America (Table S6), but these leafcutter symbioses, all of them involving dicot-specialized leafcutter species, are not representative of the more complex leafcutter symbioses existing across South America (Figs. 1 & S1). Leafcutter species specialized on cultivation of Clade-B fungi occur only in South America (ranging from Argentina to Colombia; Fig. S1), the highest concentration of Clade-B-cultivating leafcutter nests found so far is in southern South America (Table S1), and Clade-A fungi of leafcutter ants are more diverse in South America than in Central and North America (Fig. 1). This co-occurrence of the greatest leafcutter ant species diversity and greatest cultivar diversity in southern South America may not be a coincidence, yet the leafcutter ant-fungus associations in the grasslands of southern South America are far less understood than those in highly disturbed Central America forests dominated by weedy leafcutter ant species. If the Kusnezov-Fowler hypothesis for the origin of leafcutter ants in subtropical southern South America is correct and accounts for the concentrated diversity of leafcutter species there (Borgmeier 1959; Gonçalves 1961; Kusnezov 1963; Mariconi 1970; Fowler 1983; Farji-Brener & Ruggiero 1994; Wild 2007; Mueller & Rabeling 2008; Bacci et al. 2009; Delabie et al. 2011; Brandão et al. 2011; Della Lucia 2011), a comprehensive cultivar survey in Argentina, Uruguay, Paraguay, Bolivia, and sub-Amazonian Brazil is most likely to uncover unknown types of leafcutter fungi (i.e., "Clade-C" or "Clade-D" cultivars), which will inform hypotheses on the diversity of cultivars available for cultivation at the origin of leafcutter ants.

Acknowledgements

We thank two anonymous reviewers for comments on the manuscript. The work was supported by the Ministério da Educação do Brasil, Conselho Nacional de Desenvolvimento Científico e Tecnológico, and Fundação de Amparo à Pesquisa do Estado de São Paulo of Brazil (awards CAPES/UT 05/02, CNPq 302777/2003-2, and FAPESP 03/08112-0 to MBJr; CAPES Fellowships to SMB & RA); the National Science Foundation (award 9707209 to UGM, TRS, SAR; 0110073 to UGM, TRS & HLV; 998379, 0639879, 0919519, 0949689 & 1354666 to UGM; 0206372 to AGH; 0407772 & 07012333 to SES; 0508613 to ASM; 0508698 to RMMA; 0808164 to CR; 1456964 & 1654829 to CR & TRS); and the W.M. Wheeler Endowment of the University of Texas at Austin.

References

Burton OJ, Travis JMJ (2008) The frequency of fitness peak shifts is increased at expanding range margins due to mutation surfing. Genetics, 179, 941–950.

Carlson AL, Ishak HD, Kurian J, Mikheyev AS, Gifford I, Mueller UG (in press) The multinucleate fungus of leafcutter ants can be dekaryotized and recombined to study genetic mechanisms regulating growth of nutritive hyphal nodules harvested by the ants. Mycologia, in press.

This article is protected by copyright. All rights reserved

Möller A (1893) *Die Pilzgärten einiger südamerikanischer Ameisen*. Verlag Gustav Fisher, Jena, Germany.

This article is protected by copyright. All rights reserved

DNA sequences: Genbank accessions GQ853919–GQ854367, GQ854817–GQ855186, HQ391561–HQ391895.

Sample information, microsatellite genotypes, analyses: Tables S1-S10 in Supporting Information.

Author Contributions

Fig. 1 Biogeographic patterns of 419 *Leucocoprinus gongylophorus* fungi cultivated by leafcutter ants.

Top-left: A Principal Component Analysis (PCA) of microsatellite marker profiles. The first two principal components, representing 38.3% of the genetic variation, group the leafcutter fungi into three clusters, with PCA axis 2 corresponding to latitude south-to-north. Fungi from north-west of the Andes cluster as a cohesive group at the top-left in the PCA plot (i.e., collections from western Colombia = CO-W, western Venezuela = VE-W, Central America = CeAm, North America = NoAm). Fungi from northern South America cluster mostly at the top-right (Ecuador = EC, Peru = PE, eastern Venezuela = VE-E, the Guianas (Guyana, Suriname, French Guiana) = GU, northern Brazil = BR-N, CO-AM = Amazonian Colombia), and fungi from southern South America cluster mostly at the bottom-right (central Brazil = BR-C, eastern Brazil = BR-E, southern Brazil = BR-S, Argentina & Uruguay = AR). Solid dots mark the centroids of the main collection regions. **Top-right:** Discriminant Analysis of Principal Components (DAPC). The first 10 principal components, representing 78.0% of the genetic variation, resulted in assignments of leafcutter fungi to three clusters similar to the geographic distribution of clusters in a STRUCTURE analysis (bottom panels), with clusters coded purple, green, and burnt orange. The geographical visualization of these sample assignments also identifies collection locations ranging from Uruguay to the southern USA. Table S1 lists exact collection locations. **Bottom panels:** As in the PCA and the DAPC, STRUCTURE analysis of microsatellite profiles assigns the fungi to three clusters (purple, green, burnt orange). To visualize biogeographic patterns, membership in these three clusters is mapped onto ten biogeographic regions: Argentina & Uruguay, southern Brazil, northern Brazil, Peru, Ecuador, the Guianas (Guyana, Suriname, French Guiana), Venezuela, Colombia, Central America
(Panamá, Costa Rica, Honduras), and North America (Mexico, Cuba, USA). The size of each pie chart corresponds to the number of leafcutter nests surveyed in each region; each pie chart is centered on the centroid of the collections from a region. In both the PCA and the STRUCTURE analysis, populations of L. gongylophorus fungi in Central and North America are less diverse than populations in South America.

Table 1 Comparison of crown ages and stem ages for Clade-A fungi, for the leafcutter ant clade, and for the higher-attine ant clade, estimated in six published phylogenetic analyses

<table>
<thead>
<tr>
<th>CLADE-A FUNGI</th>
<th>LEAFCUTTER ANT CLADE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crown Age of Clade-A Fungi</td>
<td>Crown Age of Leafcutter Ant Clade</td>
<td></td>
</tr>
<tr>
<td>8 mya (6-15), without Ac. striatus</td>
<td>4 mya (0.5-8.0), without Ac. striatus</td>
<td>Schultz & Brady 2008</td>
</tr>
<tr>
<td>(not estimated)</td>
<td>(not estimated)</td>
<td>Mikheyev et al. 2010</td>
</tr>
<tr>
<td>12.2 mya (9.1-15.3), without Ac. striatus</td>
<td>16.2 mya (12.6-19.7), without Ac. striatus</td>
<td>Schultz et al. 2015</td>
</tr>
<tr>
<td>7.2 mya (5.4-9.0)</td>
<td>17.9 mya (15.6-20.4), without Ac. striatus</td>
<td>Nygaard et al. 2016</td>
</tr>
<tr>
<td>17.0 mya (13.2-20.8), without Ac. striatus</td>
<td>18.2 mya (14.2-22.2), with Ac. striatus</td>
<td>Ješovnik et al. 2016</td>
</tr>
<tr>
<td>17.2 mya (13.2-20.2), without Ac. striatus</td>
<td></td>
<td>Branstetter et al. 2017</td>
</tr>
<tr>
<td>18.2 mya (14.2-22.2), with Ac. striatus</td>
<td></td>
<td>Branstetter et al. 2017</td>
</tr>
<tr>
<td>Stem Age of Clade-A Fungi</td>
<td>Stem Age of Leafcutter Ant Clade</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>25 mya (11-39)</td>
<td>(not estimated)</td>
<td></td>
</tr>
<tr>
<td>≈14 mya (from Fig. 1 in Schultz et al. 2015)</td>
<td>Schultz et al. 2015</td>
<td></td>
</tr>
<tr>
<td>22.4 mya (16.9-27.9)</td>
<td>17.8 mya (13.7-21.7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19.9 mya (17.7-22.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19.3 mya (15.2-23.7)</td>
<td></td>
</tr>
</tbody>
</table>

Mikheyev et al. (2010) used a 4-gene phylogeny to estimate the crown-node date (coalescent) and stem-node date of four Clade-A fungi isolated from two *Acromyrmex* species from Panamá and Guyana and from two *Atta* species from Panamá. Nygaard et al. (2016) used 1075 orthologous loci from transcriptome sequencing of two Clade-A fungi from *Ac. echinatior* and *Atta colombica* from Panamá.

Both Mikheyev et al. and Nygaard et al. anchored a single time-calibrated node in their phylogenetic reconstructions, the last common ancestor of ant-cultivated fungi with *Agaricus*, dated to 73 mya in Mikheyev et al. (modeled with more or less conservative distributions around this date), and dated likewise to 73 mya in Nygaard et al. (modeled with a 5% minimum age of 55 mya and a 95% maximum age of 91 mya). The ancient time-calibration (anchor at 73 mya) of the fungal phylogeny likely generates estimates for the dates of recent diversifications (e.g., crown age of Clade-A fungi) that are more unreliable than estimates for earlier diversifications. mya = million years ago.
Table 1 Comparison of crown ages and stem ages for Clade-A fungi, for the leafcutter ant clade, and for the higher-attine ant clade, estimated in six published phylogenetic analyses

<table>
<thead>
<tr>
<th>CLADE-A FUNGI</th>
<th>LEAFCUTTER ANT CLADE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crown Age of Clade-A Fungi</td>
<td>Crown Age of Leafcutter Ant Clade</td>
<td></td>
</tr>
<tr>
<td>4 mya (0.5-8.0)</td>
<td>8 mya (6-15), without Ac. striatus</td>
<td>Schultz & Brady 2008</td>
</tr>
<tr>
<td>7.2 mya (5.4-9.0)</td>
<td>12.2 mya (9.1-15.3), without Ac. striatus</td>
<td>Schultz et al. 2015</td>
</tr>
<tr>
<td>16.2 mya (12.6-19.7), without Ac. striatus</td>
<td>17.9 mya (15.6-20.4), without Ac. striatus</td>
<td>Nygaard et al. 2016</td>
</tr>
<tr>
<td>17.0 mya (13.2-20.8), without Ac. striatus</td>
<td>18.2 mya (14.2-22.2), with Ac. striatus</td>
<td>Branstetter et al. 2017</td>
</tr>
<tr>
<td>≈14 mya (from Fig. 1 in Schultz et al. 2015)</td>
<td>9 mya (7-15)</td>
<td>Schultz & Brady 2008</td>
</tr>
<tr>
<td>19.9 mya (17.7-22.5)</td>
<td>19.3 mya (15.2-23.7)</td>
<td>Ješovnik et al. 2016</td>
</tr>
</tbody>
</table>

Stem Age of Clade-A Fungi	**Stem Age of Leafcutter Ant Clade**		
20 mya (17-29)	25 mya (11-39)	(not estimated)	Mikheyev et al. 2010
22.4 mya (16.9-27.9)	22.4 mya (16.9-27.9)	(not estimated)	Mikheyev et al. 2010
26.6 mya (19.6-33.8)	26.6 mya (19.6-33.8)	(not estimated)	Mikheyev et al. 2010
33.3 mya (31.3-35.1)	33.3 mya (31.3-35.1)	(not estimated)	Mikheyev et al. 2010
31.4 mya (25.9-37.2)	31.4 mya (25.9-37.2)	(not estimated)	Mikheyev et al. 2010

Mikheyev et al. (2010) used a 4-gene phylogeny to estimate the crown-node date (coalescent) and stem-node date of four Clade-A fungi isolated from two Acromyrmex species from Panamá and Guyana and from two Atta species from Panamá. Nygaard et al. (2016) used 1075 orthologous loci from transcriptome-sequencing of two Clade-A fungi from Ac. echinatior and Atta colombica from Panamá. Both Mikheyev et al. and Nygaard et al. anchored a single time-calibrated node in their phylogenetic reconstructions, the last common ancestor of ant-cultivated fungi with Agaricus, dated to 73 mya in Mikheyev et al. (modeled with more or less conservative distributions around this date), and dated

This article is protected by copyright. All rights reserved
likewise to 73 mya in Nygaard et al. (modeled with a 5% minimum age of 55 mya and a 95% maximum age of 91 mya). The ancient time-calibration (anchor at 73 mya) of the fungal phylogeny likely generates estimates for the dates of recent diversifications (e.g., crown age of Clade-A fungi) that are more unreliable than estimates for earlier diversifications. mya = million years ago.